留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

细胞共培养模型在口服药物吸收研究中的应用

黎迎 朱春燕

黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
引用本文: 黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
Citation: LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001

细胞共培养模型在口服药物吸收研究中的应用

doi: 10.3969/j.issn.1006-0111.2015.04.001
基金项目: 国家自然科学基金面上项目(81274094);协和研究生创新基金项目(10023-1007-1017)

Application of cell co-culture models in absorption of oral drug

  • 摘要: 细胞共培养体系能很好地模拟人体小肠生理环境,准确预测药物在肠道内的转运和代谢情况,增强体外细胞模型与整体动物实验研究之间的相关性,近年来在评价口服药物吸收方面发挥着越发重要的作用,已成为新药研发过程中评价药物口服吸收的热点。综述体外模拟肠道环境的细胞共培养模型,并对其应用于口服药物研发的体外评价吸收做出展望。
  • [1] Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products[J]. Toxicology, 2012,291(1-3):10-17.
    [2] Chen XM, Elisia I, Kitts DD. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design[J]. J Pharmacol Toxicol Meth, 2010, 61(3):334-342.
    [3] Behrens I, Stenberg P, Artursson P, et al. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells[J]. Pharm Res, 2001,18 (8):1138-1145.
    [4] Walter E, Janich S, Roessler BJ, et al. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans[J]. J Pharm Sci,1996,85(10):1070-1076.
    [5] Woitiski CB, Sarmento B, Carvalho RA, et al. Facilitated nanoscale delivery of insulin across intestinal membrane models[J]. Int J Pharm, 2011, 412(1-2):123-131.
    [6] Rocha RA, Vélez D, Devesa V. In vitro evaluation of intestinal fluoride absorption using different cell models[J]. Toxicol Lett,2012,210(3):311-317.
    [7] Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability[J]. J Nutr Biochem, 2009, 20(7):494-502.
    [8] Vázquez M, Calatayud M, Vélez D, et al. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells[J].Toxicology,2013,311(3):147-153.
    [9] Sam M, Linda F, David JB, et al. Melittin as a Permeability EnhancerⅡ: In vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae [ J]. Pharm Res, 2007, 24(7): 1346-1356.
    [10] Maresca M, Mahfoud R, Garmy N, et al. The Mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells[J]. Amer Soc Nutr Sci,2002,132 (9):2723-2731.
    [11] Gagnon M, Zihler Berner A, Chervet N, et al. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion[J].J Microbiol Meth,2013,94(3):274-279.
    [12] Lai YH, D'Souza MJ. Microparticle transport in the human intestinal M cell model[J]. J Drug Target, 2008, 16(1): 36-42.
    [13] Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis[J]. FEMS Immunol MedMicrobiol, 2008, 52(1): 2-12.
    [14] des Rieux A, Ragnarsson EG, Gullberg E, et al. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium[J]. Eur J Pharm Sci, 2005,25(4-5): 455-465.
    [15] Gullberg E, Leonard M, Karlsson J, et al. Expression of specific markers and particle transport in a new human intestinal M-cell model[J]. Biochem Biophys Res Commun, 2000, 279(3): 808-813.
    [16] des Rieux A, Fievez V, Théate I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells[J]. Eur J Pharm Sci, 2007, 30(5): 380-391.
    [17] Garinot M, Fiévez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination[J]. J Control Release, 2007, 120(3):195-204.
    [18] Pielage JF, Cichon C, Greune L, et al. Reversible differentiation of Caco-2 cells reveals galectin-9 as a surface marker molecule for human follicle-associated epithelia and M cell-like cells[J]. Int J Biochem Cell Biol, 2007, 39(10): 1886-1901.
    [19] Kadiyala I, Looa Y, Roy K, et al. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes[J]. Eur J Pharm Sci, 2010, 39(1-3):103-109.
    [20] Tonry JH, Popov SG, Narayanan A, et al. In vivo murine and in vitro M-like cell models of gastrointestinal anthrax[J]. Microb Infect, 2013, 15(1):37-44.
    [21] Antunes F, Andrade F, Araújo F, et al. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs[J]. Eur J Pharm Biopharm, 2013, 83(3): 427-435.
    [22] Araújo F, Sarmento B.Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies[J].Int J Pharm, 2013, 458(1):128-134.
    [23] Han HK, Oh DM, Amidon GL. Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPepT1 cells overexpressing a human peptide transporter[J]. Pharm Res,1998,15(9):1382-1386.
    [24] Annette B, Sibylle H, Kayoshi S, et al. Cell cultures as tools in biopharmacy[J]. Eur J Pharm Sci, 2000, 11 (Suppl2):S51-S60.
    [25] Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with MRP2 gene a good model of the human intestinal mucosa?[J].Pharm Res, 2002, 19(6):773-779.
    [26] Cummins CL, Jacobsen W, Christians U, et al.CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam[J]. J Pharmacol Exper Therap, 2004,308 (1):143-155.
    [27] Korjamo T, Monkkonen J, Uusitalo J, et al. Metabolic and efflux properties of Caco-2 cells stably transfected with nuclear receptors[J].Pharm Res, 2006, 23(9):1991-2001.
    [28] Agarwal S, Jain R, Pal D,et al. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies[J]. Int J Pharm, 2007, 332(1-2):147-152.
    [29] Xiaokui H, Qi L, Changyuan W, et al. Enhancement effect of P-gp inhibitors on the intestinal absorption and antiproliferative activity of bestatin[J]. Eur J Pharm Sci, 2013, 50(3-4):420-428.
    [30] Hellinger E, Bakk ML, Pócza P,et al. Drug penetration model of vinblastine-treated Caco-2 cultures[J]. Eur J Pharmaceut Sci, 2010, 41(1): 96-106.
    [31] Brayden DJ, Griffin J. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers[J].Vet Res Commun, 2008, 32(1):93-106.
    [32] Darwich AS, Neuhoff S, Jamei M, et al. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "advanced dissolution, absorption, metabolism (ADAM)" model[J]. Curr Drug Metabol,2010,11(9):716-729.
    [33] Schmohl M, Schneiderhan-Marra N, Baur N, et al. Characterization of immunologically active drugs in a novel organotypic co-culture model of the human gut and whole blood[J]. Int Immunopharmacol, 2012, 14(4):722-728.
    [34] Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease[J]. Lab Invest, 2004, 84(3),282-291.
    [35] Yasuda M, Furuyashiki T, Nakamura T,et al. Immunomodulatory activity of enzymatically synthesized glycogen and its digested metabolite in a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages[J].Food Funct, 2013,4(9), 1387-1393.
    [36] Leonard F, Collnot EM, Lehr CM. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro[J]. Mol Pharm, 2013, 7(6), 2103-2119.
    [37] 陈晓清,焦 红,程树军,等.Caco-2细胞与肠道菌共培养初建体外肠道共生模型[J].中山大学学报(医学科学版),2012,33(1):121-126.
    [38] Le Hégarat L, Huet S, Fessard V. A co-culture system of human intestinal Caco-2 cells and lymphoblastoid TK6 cells for investigating the genotoxicity of oral compounds[J]. Mutagenesis,2012,27(6):631-636.
  • [1] 陈兰, 何晓莉, 游飘雪, 王辉, 洪战英.  基于微流控芯片的体外肠道吸收模型构建及其应用进展 . 药学实践与服务, 2024, 42(2): 43-49, 59. doi: 10.12206/j.issn.2097-2024.202305003
    [2] 程俊飞, 赵安鹏, 赵以览, 王子晗, 李文斌, 王荣.  高原低氧环境影响胃肠道功能的因素及药物保护作用研究进展 . 药学实践与服务, 2023, 41(11): 648-653. doi: 10.12206/j.issn.2097-2024.202111018
    [3] 何晓莉, 施艺玮, 王辉, 戴建英, 洪战英.  细胞代谢组学及其在中枢神经系统疾病研究的应用进展 . 药学实践与服务, 2023, 41(2): 63-69. doi: 10.12206/j.issn.2097-2024.202203006
    [4] 胡北, 史英, 张朝绅, 许子华.  美沙拉嗪肠溶缓释颗粒剂的大鼠药动学及胃肠道分布研究 . 药学实践与服务, 2021, 39(4): 352-358. doi: 10.12206/j.issn.1006-0111.202007101
    [5] 刘昕竹, 徐人杰, 冯城, 魏昕.  红景天苷单体与坤复康片大鼠口服药动学特征的比较 . 药学实践与服务, 2021, 39(1): 49-52. doi: 10.12206/j.issn.1006-0111.202006043
    [6] 钱俞君, 秦春霞, 孙莉莉, 丁华敏, 李铁军.  建立以HIF-1α为靶标的高通量筛选防治动脉粥样硬化先导化合物的细胞模型 . 药学实践与服务, 2019, 37(1): 27-31. doi: 10.3969/j.issn.1006-0111.2019.01.007
    [7] 高越, 刘照元, 樊丽, 董国强, 周正, 罗云根, 张红武.  美国药师培养体系的启示 . 药学实践与服务, 2016, 34(3): 232-236. doi: 10.3969/j.issn.1006-0111.2016.03.010
    [8] 管文婕, 吴新安, 陈延杰.  玉屏风胶囊致急性胃肠道反应1例 . 药学实践与服务, 2015, 33(6): 576-576. doi: 10.3969/j.issn.1006-0111.2015.06.027
    [9] 吴佩芝, 胡丽辉, 刘丽娟, 翁少敏.  全自动口服药品摆药机的故障分析及处理方法 . 药学实践与服务, 2013, 31(1): 69-71. doi: 10.3969/j.issn.1006-0111.2013.01.021
    [10] 姚联珠.  铝碳酸镁预防阿奇霉素致小儿胃肠道反应效果观察 . 药学实践与服务, 2009, 27(2): 122-122,136.
    [11] 劳国琴, 赵卫国.  讨论老年住院患者口服药实行单剂量配方制的必要性 . 药学实践与服务, 2007, (6): 419-420.
    [12] 陈洪明, 郭澄.  外科胃肠道手术病人的营养支持 . 药学实践与服务, 2006, (2): 95-98.
    [13] 包志淑, 王陈翔.  浅谈西药口服药服药的时间和方法 . 药学实践与服务, 2004, (6): 345-348.
    [14] 方思永.  我院儿科处方中口服药浪费情况调查 . 药学实践与服务, 2002, (2): 118-119.
    [15] 蔡琳.  静滴ATP致急性胃肠道反应2例报告 . 药学实践与服务, 1999, (5): 278-278.
    [16] 郭涛.  非胃肠道营养剂中沉淀物的危害性 . 药学实践与服务, 1995, (3): 172-173.
    [17] 董雅珍, 孔保圻, 江佛湖, 杨秋英, 唐艰音.  吗丁啉对糖尿病患者胃肠道症状的疗效观察——附27例乳糖氢气呼吸试验 . 药学实践与服务, 1993, (1): 6-7.
    [18] LindaBeeley.  药源性胃肠道疾病 . 药学实践与服务, 1990, (3): 33-36.
    [19] HeinrichKoch.  口服抗菌新药——氟哌酸 . 药学实践与服务, 1985, (3): 10-11.
    [20] D.Piper, 苏开仲, 张紫洞.  阿司匹林与胃肠道疾病(连载之五) . 药学实践与服务, 1985, (1): 19-21.
  • 加载中
计量
  • 文章访问数:  2750
  • HTML全文浏览量:  202
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-21
  • 修回日期:  2015-03-05

细胞共培养模型在口服药物吸收研究中的应用

doi: 10.3969/j.issn.1006-0111.2015.04.001
    基金项目:  国家自然科学基金面上项目(81274094);协和研究生创新基金项目(10023-1007-1017)

摘要: 细胞共培养体系能很好地模拟人体小肠生理环境,准确预测药物在肠道内的转运和代谢情况,增强体外细胞模型与整体动物实验研究之间的相关性,近年来在评价口服药物吸收方面发挥着越发重要的作用,已成为新药研发过程中评价药物口服吸收的热点。综述体外模拟肠道环境的细胞共培养模型,并对其应用于口服药物研发的体外评价吸收做出展望。

English Abstract

黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
引用本文: 黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
Citation: LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
参考文献 (38)

目录

    /

    返回文章
    返回