留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

Toll样受体和其他分子识别受体在固有免疫中的相互作用

胥静 丁力 张俊平

胥静, 丁力, 张俊平. Toll样受体和其他分子识别受体在固有免疫中的相互作用[J]. 药学实践与服务, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
引用本文: 胥静, 丁力, 张俊平. Toll样受体和其他分子识别受体在固有免疫中的相互作用[J]. 药学实践与服务, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
XU Jing, DING Li, ZHANG Junping. Interaction among Toll-like receptors and other pattern recognition receptors in innate immune[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
Citation: XU Jing, DING Li, ZHANG Junping. Interaction among Toll-like receptors and other pattern recognition receptors in innate immune[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002

Toll样受体和其他分子识别受体在固有免疫中的相互作用

doi: 10.3969/j.issn.1006-0111.2014.05.002
基金项目: 国家自然科学基金(81102490).

Interaction among Toll-like receptors and other pattern recognition receptors in innate immune

  • 摘要: Toll样受体(Toll-like receptors,TLRs)是参与非特异性免疫(天然免疫)的一类重要蛋白分子,也是连接非特异性免疫和特异性免疫的桥梁。TLRs是一类单次跨膜非催化性的蛋白,可以识别来源于微生物上具有保守结构的分子。当微生物突破机体的物理屏障,如皮肤、黏膜等时,TLRs可以通过识别这些微生物来激活机体的免疫应答反应。除此之外,机体还具有一些其他类型的分子识别模式受体,包括C型凝集素样受体、NOD样受体、视黄酸诱导基因Ⅰ样受体。这些受体都参与了机体免疫调节,它们之间相互作用,使之形成一张极为复杂而精密的网络体系。该综述主要阐明TLRs在机体免疫调节中的作用及其与其他分子识别受体在对病原体识别过程中的交叉相互作用。
  • [1] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J].Cell, 2006, 124(4):783-802.
    [2] Kawai T,Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J].Nat Immunol, 2010, 11(5):373-384.
    [3] Elinav E, Strowig T, Henao-Mejia J. Regulation of the antimicrobial response by NLR proteins[J].Immunity,2011, 34(5):665-679.
    [4] Loo YM,Gale M. Immune signaling by RIG-I-like receptors[J].Immunity, 2011, 34(5):680-692.
    [5] Osorio F,Reis-e-Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense[J].Immunity, 2011, 34(5):651-664.
    [6] Adachi K, Tsutsui H, Kashiwamura S. Plasmodium berghei infection in mice induces liver injury by an IL-12-and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism[J].J Immunol, 2001, 167(10):5928-5934.
    [7] Beutler BA. TLRs and innate immunity[J].Blood, 2009, 113(7):1399-1407.
    [8] Blasius AL,Beutler B. Intracellular toll-like receptors[J].Immunity, 2010, 32(3):305-315.
    [9] Pifer R, Benson A, Sturge CR. UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to Toxoplasma gondii[J].J Bio Chem, 2011, 286(5):3307-3314.
    [10] Kobayashi K, Hernandez LD, Galan JE. IRAK-M is a negative regulator of Toll-like receptor signaling[J].Cell, 2002,110(2):191-202.
    [11] Barton GM,Kagan JC. A cell biological view of Toll-like receptor function:regulation through compartmentalization[J].Nat Rev Immunol, 2009, 9(8):535-542.
    [12] Sasai M, Linehan MM, Iwasaki A. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3[J].Science, 2010, 329(5998):1530-1534.
    [13] Haas T, Metzger J, Schmitz F. The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation[J].Immunity, 2008, 28(3):315-323.
    [14] Park B, Buti L, Matsuwaki T. Granulin is a soluble cofactor for toll-like receptor 9 signaling[J].Immunity, 2011, 34(4):505-513.
    [15] Mancuso G, Gambuzza M, Midiri A. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells[J].Nat immunol, 2009, 10(6):587-594.
    [16] Miao EA, Andersen-Nissen E, Warren SE. TLR5 and Ipaf:dual sensors of bacterial flagellin in the innate immune system[J].Semin Immunopathol, 2007, 29(3):275-288.
    [17] Gerold G, Zychlinsky A,de Diego JL. What is the role of Toll-like receptors in bacterial infections[J].Semin Immunol, 2007, 19(1):41-47.
    [18] Weiss DS, Raupach B, Takeda K. Toll-like receptors are temporally involved in host defense[J].J Immunol,2004, 172(7):4463-4469.
    [19] Feuillet V, Medjane S, Mondor I. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria[J].Proc Natl Acad of Sci, 2006, 103(33):12487-12492.
    [20] Saiga H, Shimada Y, Takeda K. Innate immune effectors in mycobacterial infection[J].Clin Develop Immunol, 2011, 2011:347594.
    [21] H lscher C, Reiling N, Schaible UE. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2,4 and9 [J].Eur J Immunol,2008, 38(3):680-694.
    [22] Gandotra S, Jang S, Murray PJ. Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis[J].Infect Immun,2007, 75(11):5127-5134.
    [23] Dorhoi A, Desel C, Yeremeev V. The adaptor molecule CARD9 is essential for tuberculosis control[J].J Exp Med, 2010, 207(4):777-792.
    [24] Reizis B, Bunin A, Ghosh HS. Plasmacytoid dendritic cells:recent progress and open questions[J].Annu Rev Immunol, 2011, 29:163-183.
    [25] Lee HK, Lund JM, Ramanathan B. Autophagy-dependent viral recognition by plasmacytoid dendritic cells[J].Science,2007, 315(5817):1398-1401.
    [26] Kumagai Y, Takeuchi O, Kato H. Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses[J].Immunity, 2007, 27(2):240-252.
    [27] Lemon SM. Induction and evasion of innate antiviral responses by hepatitis C virus[J].J Biol Chem, 2010, 285(30):22741-22747.
    [28] Shiina M, Rehermann B. Cell culture-produced hepatitis C virus impairs plasmacytoid dendritic cell function[J].Hepatology,2008, 47(2):385-395.
    [29] Jasani B, Navabi H, Adams M. Ampligen:a potential toll-like 3 receptor adjuvant for immunotherapy of cancer[J].Vaccine, 2009, 27(25):3401-3404.
    [30] Navabi H, Jassni B, Reece A. A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro[J].Vaccine, 2009, 27(1):107-115.
    [31] Krieg AM. Toll-free vaccines[J].Nat Biotechnol, 2007, 25(3):303-305.
    [32] Huleatt JW, Nakaar V, Desai P. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin[J].Vaccine,2008, 26(2):201-214.
    [33] Kronenberger B,Zeuzem S. Current and future treatment options for HCV[J].Ann Hepatol,2009, 8(2):103-112.
    [34] Agrawal S,Kandimalla ER. Synthetic agonists of Toll-like receptors 7, 8 and 9[J].Biochem Soc Trans, 2007, 35(Pt 6):1461-1467.
    [35] Barry M, Cooper C. Review of hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine safety and efficacy[J].Expert Opin Biol Ther, 2007, 7(11):1731-1737.
    [36] Rice TW, Wheeler AP, Bernard GR. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis[J].Crit Care Med, 2010, 38(8):1685-1694.
    [37] Ledeboer A, Liu T, Shumilla JA. The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain[J].Neuron Glia Biol, 2006, 2(4):279-291.
    [38] Ledeboer A, Hutchinson MR, Watkins LR. Ibudilast (AV-411) a new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes[J].Expert Opin Invest Drugs, 2007, 16(7):935-950.
    [39] Urbonaviciute V, Furnrohr,BF, Meister S. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes:implications for the pathogenesis of SLE[J].J Exp Med, 2008, 205(13):3007-3018.
    [40] Arslan F, de Kleijn DP, Timmers L. Bridging innate immunity and myocardial ischemia/reperfusion injury:the search for therapeutic targets[J].Curr Pharm Des, 2008, 14(12):1205-1216.
    [41] Sun S, Rao NL, Venable J. TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders[J]. Inflamm Allergy Drug Targets, 2007, 6(4):223-235.
    [42] Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-like receptors:emerging therapeutics[J].Nat Rev Drug Discov, 2010, 9(4):293-307.
  • [1] 瞿文君, 白若楠, 崔力, 周琰.  基于联合库存的公立医院多院区药品采购模式分析 . 药学实践与服务, 2024, 42(): 1-4. doi: 10.12206/j.issn.2097-2024.202401002
    [2] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [3] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
  • 加载中
计量
  • 文章访问数:  3344
  • HTML全文浏览量:  393
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-14
  • 修回日期:  2014-03-21

Toll样受体和其他分子识别受体在固有免疫中的相互作用

doi: 10.3969/j.issn.1006-0111.2014.05.002
    基金项目:  国家自然科学基金(81102490).

摘要: Toll样受体(Toll-like receptors,TLRs)是参与非特异性免疫(天然免疫)的一类重要蛋白分子,也是连接非特异性免疫和特异性免疫的桥梁。TLRs是一类单次跨膜非催化性的蛋白,可以识别来源于微生物上具有保守结构的分子。当微生物突破机体的物理屏障,如皮肤、黏膜等时,TLRs可以通过识别这些微生物来激活机体的免疫应答反应。除此之外,机体还具有一些其他类型的分子识别模式受体,包括C型凝集素样受体、NOD样受体、视黄酸诱导基因Ⅰ样受体。这些受体都参与了机体免疫调节,它们之间相互作用,使之形成一张极为复杂而精密的网络体系。该综述主要阐明TLRs在机体免疫调节中的作用及其与其他分子识别受体在对病原体识别过程中的交叉相互作用。

English Abstract

胥静, 丁力, 张俊平. Toll样受体和其他分子识别受体在固有免疫中的相互作用[J]. 药学实践与服务, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
引用本文: 胥静, 丁力, 张俊平. Toll样受体和其他分子识别受体在固有免疫中的相互作用[J]. 药学实践与服务, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
XU Jing, DING Li, ZHANG Junping. Interaction among Toll-like receptors and other pattern recognition receptors in innate immune[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
Citation: XU Jing, DING Li, ZHANG Junping. Interaction among Toll-like receptors and other pattern recognition receptors in innate immune[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 324-328,400. doi: 10.3969/j.issn.1006-0111.2014.05.002
参考文献 (42)

目录

    /

    返回文章
    返回