-
乳酸菌(Lactic acid bacteria,LAB)是一类能够通过代谢碳水化合物并发酵产生终产物乳酸的细菌统称,属于厚壁菌门、乳酸杆菌目。作为一种革兰氏阳性、兼性厌氧菌,LAB无芽孢,基因组GC含量低[1]。根据细胞形态分类包括乳球菌属、链球菌属、片球菌属、明串珠菌属、双歧杆菌属和乳杆菌属等[2]。多种类型的乳酸菌一直被应用于传统的食品发酵领域,由于其在人类食品营养领域表现出长期的安全性,被美国食品和药品管理局(FDA)认为是安全的(GRAS),并成为一种公认的食品级微生物[3-4]。乳酸菌在乳制品、饮料、肉类、蔬菜以及发酵食品的生产中发挥着重要的作用,在赋予风味的同时,乳酸菌普遍能够通过产酸来保存食物,一些菌株还可以通过产生细菌素来增强抑菌能力。机体经过口服或其它途径摄入的乳酸菌,往往能够定植于宿主的肠道中并改善肠道菌群平衡发挥益生性,因此,世界卫生组织将其定义为益生菌,即适量摄入时能够对健康产生益处的活的微生物。人体存在着数以万亿计的微生物,它们受到机体遗传、环境、饮食和生活方式等多种因素影响,由这些菌群构成的微生态系统与人体健康和某些疾病的发生发展有着密切的关系。随着下一代测序技术的出现,揭示出人体内庞大而多样的微生物类群,共生菌群与机体相关疾病的关系被逐渐阐明[5]。胃肠道中存在数量庞大的微生物群落,当群落平衡受到破坏时,会导致感染性疾病、免疫失调和代谢失衡的发生[6]。在肠道微生物菌群中一些乳酸菌的功能被逐渐发现,它们可以在消化道内存活并发挥多种功效,包括治疗腹泻、刺激免疫系统、改善纤维消化、抗肿瘤和降低胆固醇等,作为机体的益生菌,对乳酸菌的研究引起了人们的广泛关注。
基于乳酸菌的安全性、益生性以及胃肠道存活能力,为乳酸菌成为一种高生物技术潜力工程菌提供了良好的应用基础;同时得益于基因工程技术的发展,重组乳酸菌可以跨越物种屏障,生产各种重组蛋白和代谢产物,在乳制品发酵、氨基酸生产、生物药物递送以及黏膜疫苗载体中应用广泛[4, 7]。蛋白类的生物活性物质或药物以口服途径给药最为方便快捷,但通常面临胃肠道中蛋白水解和降解变性的问题,因此,亟需开发出一种药物递送系统可以用于口服给药。食品级乳酸菌属于非致病性微生物,适合作为口服或者黏膜治疗药物的递送载体,部分菌种可以在胃肠道恶劣的环境中存活下来。开发乳酸菌作为重组蛋白药物递送系统的载体,一般采用基因工程技术改造乳酸菌,通过口服或黏膜给予乳酸菌的方式,利用黏膜递送系统促使药物吸收进入机体,达到预防或治疗疾病的目的,该药物递送系统为蛋白药物应用提供了一种替代给药方式[8]。与其他相对成熟的细菌或酵母蛋白表达系统相比,乳酸菌综合了这些蛋白表达系统的优势,无包涵体及内毒素产生,外源蛋白可胞内、外表达或表面展示,多种类型表达载体可供选择,同时具有部分独有的特性如益生性、安全性等,但是由于胃肠道系统对乳酸菌生存的限制以及乳酸菌活体微生物的特殊性,乳酸菌作为药物递送系统也面临着诸多挑战。
Lactic acid bacteria as recombinant protein drug delivery carrier
-
摘要: 乳酸菌基于其安全性、益生性及肠道可定植性,是活体药物递送系统的良好候选者,现阶段众多研究将其作为蛋白药物递送载体用于疾病治疗。作为一种模式生物,多样化的基因修饰方案使其可以应用于各类疾病并能够发挥显著的治疗效果。乳酸菌药物载体具有多种优势,包括无创给药、基因可编辑性、可大规模生产等,因此利用乳酸菌作为重组蛋白表达载体的研究引起了全球范围的关注。本文对乳酸菌药物递送系统的应用基础、生物利用度提升、基因编辑策略以及研究应用现状进行了归纳和总结。Abstract: Lactic acid bacteria is a good candidate in living drug delivery system for its safety, beneficial nature, and intestinal colonizability. At present, most studies use it as a protein drug delivery carrier for disease treatment. As a model organism, a variety of gene modification schemes enable it to be applied to various diseases and can play a significant therapeutic effect. Lactic acid bacteria drug carrier has many advantages, including non-invasive drug delivery, gene editing, large-scale production Therefore, the use of lactic acid bacteria as recombinant protein expression vector has attracted global attention. In this review, the application basis, bioavailability improvement, gene editing strategy and research and application status of lactobacillus drug delivery system were summarized.
-
Key words:
- lactic acid bacteria /
- biological drug /
- delivery carrier
-
[1] GARBACZ K. Anticancer activity of lactic acid bacteria[J]. Semin Cancer Biol, 2022, 86:356-366. doi: 10.1016/j.semcancer.2021.12.013 [2] SILVA W M, SOUSA C S, OLIVEIRA L C, et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics[J]. Microb Biotechnol, 2019, 12(2):265-274. doi: 10.1111/1751-7915.13305 [3] WU J P, XIN Y P, KONG J, et al. Genetic tools for the development of recombinant lactic acid bacteria[J]. Microb Cell Fact, 2021, 20(1):118. doi: 10.1186/s12934-021-01607-1 [4] SAHA U B, SAROJ S D. Lactic acid bacteria: prominent player in the fight against human pathogens[J]. Expert Rev Anti Infect Ther, 2022, 20(11):1435-1453. doi: 10.1080/14787210.2022.2128765 [5] MAYS Z J, NAIR N U. Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics[J]. Curr Opin Biotechnol, 2018, 53:224-231. doi: 10.1016/j.copbio.2018.01.028 [6] KRISHNAN S, ALDEN N, LEE K. Pathways and functions of gut microbiota metabolism impacting host physiology[J]. Curr Opin Biotechnol, 2015, 36:137-145. doi: 10.1016/j.copbio.2015.08.015 [7] HU Y Y, ZHANG L, WEN R X, et al. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: a review[J]. Crit Rev Food Sci Nutr, 2022, 62(10):2741-2755. doi: 10.1080/10408398.2020.1858269 [8] WYSZYŃSKA A, KOBIERECKA P, BARDOWSKI J, et al. Lactic acid bacteria: 20 years exploring their potential as live vectors for mucosal vaccination[J]. Appl Microbiol Biotechnol, 2015, 99(7):2967-2977. doi: 10.1007/s00253-015-6498-0 [9] TAGUCHI S, OOI T, MIZUNO K, et al. Advances and needs for endotoxin-free production strains[J]. Appl Microbiol Biotechnol, 2015, 99(22):9349-9360. doi: 10.1007/s00253-015-6947-9 [10] HELANDER H F, FÄNDRIKS L. Surface area of the digestive tract–revisited[J]. Scand J Gastroenterol, 2014, 49(6):681-689. doi: 10.3109/00365521.2014.898326 [11] MORADI-KALBOLANDI S, MAJIDZADEH-A K, ABDOLVAHAB M H, et al. The role of mucosal immunity and recombinant probiotics in SARS-CoV2 vaccine development[J]. Probiotics Antimicrob Proteins, 2021, 13(5):1239-1253. doi: 10.1007/s12602-021-09773-9 [12] SONG A A, IN L L, LIM S, et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16(1):55. doi: 10.1186/s12934-017-0669-x [13] WEGMANN U, O'CONNELL-MOTHERWAY M, ZOMER A, et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363[J]. J Bacteriol, 2007, 189(8):3256-3270. doi: 10.1128/JB.01768-06 [14] DIVYA J B, VARSHA K K, NAMPOOTHIRI K M, et al. Probiotic fermented foods for health benefits[J]. Eng Life Sci, 2012, 12(4):377-390. doi: 10.1002/elsc.201100179 [15] VESA T, POCHART P, MARTEAU P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract[J]. Aliment Pharmacol Ther, 2000, 14(6):823-828. doi: 10.1046/j.1365-2036.2000.00763.x [16] KIMOTO H, NOMURA M, KOBAYASHI M, et al. Survival of lactococci during passage through mouse digestive tract[J]. Can J Microbiol, 2003, 49(11):707-711. doi: 10.1139/w03-092 [17] MORISHITA M, PEPPAS N A. Is the oral route possible for peptide and protein drug delivery?[J]. Drug Discov Today, 2006, 11(19-20):905-910. doi: 10.1016/j.drudis.2006.08.005 [18] SANDERS M E. Impact of probiotics on colonizing microbiota of the gut[J]. J Clin Gastroenterol, 2011, 45:S115-S119. doi: 10.1097/MCG.0b013e318227414a [19] TAN L L, MAHOTRA M, CHAN S Y, et al. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery[J]. Carbohydr Polym, 2022, 286:119279. doi: 10.1016/j.carbpol.2022.119279 [20] DIVYA J B, NAMPOOTHIRI K M. Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods[J]. Bioresour Technol, 2015, 188:226-230. doi: 10.1016/j.biortech.2015.01.073 [21] OH S H, KIM S H, JEON J H, et al. Cytoplasmic expression of a model antigen with M Cell-Targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route[J]. Vaccine, 2021, 39(30):4072-4081. doi: 10.1016/j.vaccine.2021.06.010 [22] SÁNCHEZ C, MAYO B. General and specialized vectors derived from pBM02, a new rolling circle replicating plasmid of Lactococcus lactis[J]. Plasmid, 2004, 51(3):265-271. doi: 10.1016/j.plasmid.2003.12.005 [23] HERNANDEZ-VALDES J A, HUANG C X, KOK J, et al. Another breaker of the wall: the biological function of the Usp45 protein of Lactococcus lactis[J]. Appl Environ Microbiol, 2020, 86(16):e00903-e00920. [24] LANDETE J M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application[J]. Crit Rev Biotechnol, 2017, 37(3):296-308. doi: 10.3109/07388551.2016.1144044 [25] FRELET-BARRAND A. Lactococcus lactis, an attractive cell factory for the expression of functional membrane proteins[J]. Biomolecules, 2022, 12(2):180. doi: 10.3390/biom12020180 [26] MU D D, MONTALBÏ¿½N-LÏ¿½PEZ M, MASUDA Y, et al. Zirex: a novel zinc-regulated expression system for Lactococcus lactis[J]. Appl Environ Microbiol, 2013, 79(14):4503-4508. doi: 10.1128/AEM.00866-13 [27] BENBOUZIANE B, RIBELLES P, AUBRY C, et al. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces[J]. J Biotechnol, 2013, 168(2):120-129. doi: 10.1016/j.jbiotec.2013.04.019 [28] ZHANG B, LI A D, ZUO F L, et al. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells[J]. Microb Cell Fact, 2016, 15(1):102. doi: 10.1186/s12934-016-0506-7 [29] ZENG Z, YU R, ZUO F L, et al. Recombinant Lactococcus lactis expressing bioactive exendin-4 to promote insulin secretion and beta-cell proliferation in vitro[J]. Appl Microbiol Biotechnol, 2017, 101(19):7177-7186. doi: 10.1007/s00253-017-8410-6 [30] SZATRAJ K, SZCZEPANKOWSKA A K, CHMIELEWSKA-JEZNACH M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts[J]. J Appl Microbiol, 2017, 123(2):325-339. doi: 10.1111/jam.13446 [31] TAGHINEZHAD-S S, KEYVANI H, BERMÚDEZ-HUMARÁN L G, et al. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis[J]. Cell Mol Life Sci, 2021, 78(4):1191-1206. doi: 10.1007/s00018-020-03652-2 [32] LEVIT R, CORTES-PEREZ N G, DE MORENO DE LEBLANC A, et al. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health[J]. Gut Microbes, 2022, 14(1):2110821. doi: 10.1080/19490976.2022.2110821
计量
- 文章访问数: 3965
- HTML全文浏览量: 1224
- PDF下载量: 51
- 被引次数: 0