留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

PP2C蛋白磷酸酶调控的细胞信号通路研究进展

齐阳 许维恒 张俊平 宋洪涛

齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
引用本文: 齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
Citation: QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001

PP2C蛋白磷酸酶调控的细胞信号通路研究进展

doi: 10.3969/j.issn.1006-0111.2018.05.001

Progress on cell signaling pathways regulated by PP2C protein phosphatases

  • 摘要: 2C类蛋白磷酸酶是蛋白磷酸酶家族的重要成员,可以对丝/苏氨酸残基特异性脱磷酸。近来研究表明,2C类蛋白磷酸酶控制着大量关键的细胞功能,如增殖、细胞周期阻滞、衰老和细胞程序性死亡、凋亡和自噬等,因而在介导机体免疫反应、衰老、神经发育及肿瘤发生发展中发挥重要的生物学作用。总结PP2C基因各亚型参与介导的重要细胞信号通路,如丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇3-激酶/丝苏氨酸蛋白激酶(PI3K/AKT)、转化生长因子-β(TGF-β)/Smads、核转录因子-κB(NF-κB)及DNA损伤应答通路,以期为阐明上述生理病理过程的分子基础和调控机制提供新的思路。
  • [1] TONG Y, QUIRION R, SHEN SH. Cloning and characterization of a novel mammalian PP2C isozyme[J]. J Biol Chem, 1998, 273(52):35282-35290.
    [2] OGHABI BAKHSHAIESH T, MAJIDZADEH-A K,ESMAEILI R. Wip1:A candidate phosphatase for cancer diagnosis and treatment[J]. DNA Repair(Amst), 2017, 54:63-66.
    [3] LU X, AN H, JIN R, et al. PPM1A is a RelA phosphatase with tumor suppressor-like activity[J]. Oncogene, 2014, 33(22):2918-2927.
    [4] LIU T, LIU Y, CAO J, et al. ILKAP binding to and dephosphorylating HIF-1α is essential for apoptosis induced by severe hypoxia[J]. Cell Physiol Biochem, 2018, 46(6):2500-2507.
    [5] TANG Y, PAN B, ZHOU X, et al. Wip1-dependent modulation of macrophage migration and phagocytosis[J]. Redox Biol, 2017, 13:665-673.
    [6] MATHUR A, PANDEY VK, KAKKAR P. PHLPP:a putative cellular target during insulin resistance and type 2 diabetes[J]. J Endocrinol, 2017, 233(3):R185-R198.
    [7] LIU G, HU X, SUN B, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1[J]. Blood, 2013, 121(3):519-529.
    [8] YU Y, LI J, WAN Y, et al. GADD45α induction by nickel negatively regulates JNKs/p38 activation via promoting PP2Cα expression[J]. PLoS ONE, 2013, 8(3):e57185.
    [9] NEWTON AC, TROTMAN LC. Turning off AKT:PHLPP as a drug target[J]. Annu Rev Pharmacol Toxicol, 2014, 54:537-558.
    [10] SUN Y, TIAN H, WANG L. Effects of PTEN on the proliferation and apoptosis of colorectal cancer cells via the phosphoinositol-3-kinase/Akt pathway[J]. Oncol Rep, 2015, 33(4):1828-1836.
    [11] GRZECHNIK AT, NEWTON AC. PHLPPing through history:a decade in the life of PHLPP phosphatases[J]. Biochem Soc Trans, 2016, 44(6):1675-1682.
    [12] NITSCHE C, EDDERKAOUI M, MOORE RM, et al. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation[J]. Gastroenterology, 2012, 142(2):377-387.
    [13] HWANG SM, FEIGENSON M, BEGUN DL, et al. Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis[J]. J Orth Res, 2018, 36(5):1487-1497.
    [14] QIN Y, MENG L, FU Y, et al. SNORA74B gene silencing inhibits gallbladder cancer cells by inducing PHLPP and suppressing Akt/mTOR signaling[J]. Oncotarget, 2017, 8(12):19980-19996.
    [15] JANG SW, YANG SJ, SRINIVASAN S, et al. Akt phosphorylates Mstl and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation[J]. J Biol Chem, 2007, 282(42):30836-30844.
    [16] QIAO M, WANG Y, XU X, et al. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis[J]. Mol Cell, 2010, 38(4):512-523.
    [17] KARIN M. Nuclear factor-kappaB in cancer development and progression[J]. Nature, 2006, 441(7092):431-436.
    [18] RINKENBAUGH AL, BALDWIN AS. The NF-κB pathway and cancer stem cells[J]. Cells, 2016, 5(2):E12.
    [19] CHRISTIAN F, SMITH EL, CARMODY RJ. The Regulation of NF-κB Subunits by Phosphorylation[J]. Cells, 2016, 5(1):12.
    [20] SUN W, YU Y, DOTTI G, et al. PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFα-induced IKKbeta-NF-kappaB activation[J]. Cell Signal, 2009, 21(1):95-102.
    [21] AGARWAL NK, ZHU X, GAGEA M, et al. PHLPP2 suppresses the NF-κB pathway by inactivating IKKβ kinase[J]. Oncotarget, 2014, 5(3):815-823.
    [22] MIN J, ZASLAVSKY A, FEDELE G, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB[J]. Nat Med, 2010, 16(3):286-294.
    [23] CHEN LF, GREENE WC. Shaping the nuclear action of NF-kappaB[J]. Nat Rev Mol Cell Biol, 2004, 5(5):392-401.
    [24] LIU L, DAI Y, CHEN J, et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK -3β/snail signaling[J]. Hepatology, 2014, 59(2):531-543.
    [25] SHEN XF, ZHAO Y, JIANG JP, et al. Phosphatase Wip1 in immunity:an overview and update[J]. Front Immunol, 2017, 8:8.
    [26] LOWE JM, CHA H, YANG Q, et al. Nuclear factor-kappaB(NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase[J]. J Biol Chem, 2010, 285(8):5249-5257.
    [27] LIN X, DUAN X, LIANG YY, et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling[J]. Cell, 2016, 165(2):498.
    [28] DAI F, SHEN T, LI Z, et al. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3[J]. EMBO Rep, 2011, 12(11):1175-1181.
    [29] WANG L, WANG X, CHEN J, et al. Activation of protein serine/threonine phosphatase PP2Cα efficiently prevents liver fibrosis[J]. PLoS ONE, 2010, 5(12):e14230.
    [30] MIYAZONO K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer[J]. Phys Biol Sci, 2009, 85(8):314-323.
    [31] GENG J, FAN J, OUYANG Q, et al. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway[J]. Oncotarget, 2014, 5(14):5700-5711.
    [32] FURGASON JM, BAHASSI el M. Targeting DNA repair mechanisms in cancer[J]. Pharmacol Ther, 2013, 137(3):298-308.
    [33] LEEM J, KIM JS, OH JS. WIPL phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes[J]. Biol Reprod, 2018(Epub).
    [34] JAISWAL H, BENADA J, MVLLERS E, et al. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration[J]. EMBO J, 2017, 36(14):2161-2176.
    [35] WANG ZP, TIAN Y, LIN J. Role of wild-type p53-induced phosphatase 1 in cancer[J]. Oncol Lett, 2017, 14(4):3893-3898.
    [36] OLIVA-TRASTOY M, BERTHONAUD V, CHEVALIER A, et al. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase[J]. Oncogene, 2006, 26(10):1449-1458.
    [37] SLUSS HK, ARMATA H, GALLANT J, et al. Phosphorylation of serine 18 regulates distinct p53 functions in mice[J]. Mol Cell Biol, 2004, 24(3):976-984.
    [38] GOLOUDINA AR, KOCHETKOVA EY, POSPELOVA TV, et al. Wip1 phosphatase:between p53 and MAPK kinases pathways[J]. Oncotarget, 2016, 7(21):31563-31571.
  • [1] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [2] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
    [3] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [4] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [5] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [6] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
    [7] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [8] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404034
    [9] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [10] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪对冷暴露小鼠损伤的研究 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202404005
    [11] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [12] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [13] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [14] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [15] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [16] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [17] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
  • 加载中
计量
  • 文章访问数:  4531
  • HTML全文浏览量:  611
  • PDF下载量:  1282
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-23
  • 修回日期:  2018-07-01

PP2C蛋白磷酸酶调控的细胞信号通路研究进展

doi: 10.3969/j.issn.1006-0111.2018.05.001

摘要: 2C类蛋白磷酸酶是蛋白磷酸酶家族的重要成员,可以对丝/苏氨酸残基特异性脱磷酸。近来研究表明,2C类蛋白磷酸酶控制着大量关键的细胞功能,如增殖、细胞周期阻滞、衰老和细胞程序性死亡、凋亡和自噬等,因而在介导机体免疫反应、衰老、神经发育及肿瘤发生发展中发挥重要的生物学作用。总结PP2C基因各亚型参与介导的重要细胞信号通路,如丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇3-激酶/丝苏氨酸蛋白激酶(PI3K/AKT)、转化生长因子-β(TGF-β)/Smads、核转录因子-κB(NF-κB)及DNA损伤应答通路,以期为阐明上述生理病理过程的分子基础和调控机制提供新的思路。

English Abstract

齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
引用本文: 齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
Citation: QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
参考文献 (38)

目录

    /

    返回文章
    返回