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Research progress on the effects and mechanisms of

plateau hypoxia on drug metabolism
LI Qian'?, WANG Rong', YANG Feng’, WANG Xiaofeng’, YIN Dongfeng’(1. School of Pharmacy, Xinjiang Medical University,
Urumgi 830000, China; 2. General Hospital of Xinjiang Military Command, Urumgqi 830000, China)

[Abstract] The plateau region is known for its unique environmental characteristics of low oxygen, low pressure, strong
radiation, cold and dryness. Under the low oxygen environment, human physiological functions and drug metabolism are
significantly affected. In order to gain a deeper understanding of drug metabolism in the plateau hypoxic environment and to guide

the rational use of drugs in the plateau region, the effects of plateau hypoxia on drug metabolism were reviewed in this paper, which

focused on changes in metabolic profiles, enzyme activity and expression, and probes the relevant mechanisms in depth.

[Key words] Plateau; hypoxia; drug metabolism; drug metabolising enzymes; gut flora
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