| [1] | HAMBLIN M R. Novel pharmacotherapy for burn wounds: what are the advancements[J]. Expert Opin Pharmacother, 2019, 20(3): 305-321. doi: 10.1080/14656566.2018.1551880 |
| [2] | KARGOZAR S, MOZAFARI M, HAMZEHLOU S, et al. Using bioactive glasses in the management of burns[J]. Front Bioeng Biotechnol, 2019, 7: 62. doi: 10.3389/fbioe.2019.00062 |
| [3] | JESCHKE M G, VAN BAAR M E, CHOUDHRY M A, et al. Burn injury[J]. Nat Rev Dis Primers, 2020, 6(1): 11. doi: 10.1038/s41572-020-0145-5 |
| [4] | CANCIO L C. Topical antimicrobial agents for burn wound care: history and current status[J]. Surg Infect, 2021, 22(1): 3-11. doi: 10.1089/sur.2020.368 |
| [5] | AFLAKIAN F, MIRZAVI F, AIYELABEGAN HT, et al. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials[J]. Eur J Pharm Sci. 2023, 188: 106515. |
| [6] | BARANWAL A, SRIVASTAVA A, KUMAR P, et al. Prospects of nanostructure materials and their composites as antimicrobial agents[J]. Front Microbiol, 2018, 9: 422. doi: 10.3389/fmicb.2018.00422 |
| [7] | SÁNCHEZ-LÓPEZ E, GOMES D, ESTERUELAS G, et al. Metal-based nanoparticles as antimicrobial agents: an overview[J]. Nanomaterials, 2020, 10(2): 292. doi: 10.3390/nano10020292 |
| [8] | HUANG R, HU J, QIAN W, et al. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma. 2021, 9: tkab026. |
| [9] | MORONES J R, ELECHIGUERRA J L, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005, 16(10), 2346-2353. |
| [10] | HOLMES A M, LIM J, STUDIER H, et al. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition[J]. Nanotoxicology, 2016, 10(10): 1503-1514. doi: 10.1080/17435390.2016.1236993 |
| [11] | LI Y, WANG L, HE X, et al. Meta-Analysis of the Therapeutic Effect of Nanosilver on Burned Skin[J]. J Nanosci Nanotechno. 2020; 20(12): 7730-7734. |
| [12] | Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview[J]. Nanomaterials. 2018; 8(9): 681. |
| [13] | LIU X Y, GAN H, HU C R, et al. Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent[J]. Int J Nanomed, 2018, 14: 289-300. doi: 10.2147/IJN.S187918 |
| [14] | ZHAI M, XU Y, ZHOU B, et al. Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application[J]. J Photochem Photobiol B. 2018, 180: 253-258. |
| [15] | KALIRAJAN C, PALANISAMY T. A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury[J]. J Mater Chem B, 2019, 7(38): 5873-5886. doi: 10.1039/C9TB01097A |
| [16] | SINGH S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity[J]. Toxicol Mech Methods, 2019, 29(4): 300-311. doi: 10.1080/15376516.2018.1553221 |
| [17] | YE M L, KIM S, PARK K. Issues in long-term protein delivery using biodegradable microparticles[J]. J Control Release, 2010, 146(2): 241-260. doi: 10.1016/j.jconrel.2010.05.011 |
| [18] | SOUTO E B, RIBEIRO A F, FERREIRA M I, et al. New nanotechnologies for the treatment and repair of skin burns infections[J]. Int J Mol Sci, 2020, 21(2): 393. doi: 10.3390/ijms21020393 |
| [19] | RAFIEI P, HADDADI A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile[J]. Int J Nanomedicine, 2017, 12: 935-947. doi: 10.2147/IJN.S121881 |
| [20] | UCAK S, SUDAGIDAN M, BORSA B A, et al. Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains[J]. World J Microbiol Biotechnol, 2020, 36(5): 69. doi: 10.1007/s11274-020-02845-y |
| [21] | CONCHA M, VIDAL A, GIACAMAN A, et al. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: biological properties toward wound healing[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(6): 2464-2471. doi: 10.1002/jbm.b.34038 |
| [22] | KAUR J, KOUR A, PANDA J J, et al. Exploring endolysin-loaded alginate-chitosan nanoparticles as future remedy for staphylococcal infections[J]. AAPS PharmSciTech, 2020, 21(6): 233. doi: 10.1208/s12249-020-01763-4 |
| [23] | WU D Y, WEI D, DU M T, et al. Targeting antibacterial effect and promoting of skin wound healing after infected with methicillin-resistant Staphylococcus aureus for the novel polyvinyl alcohol nanoparticles[J]. Int J Nanomedicine, 2021, 16: 4031-4044. doi: 10.2147/IJN.S303529 |
| [24] | NASKAR A, KIM K S. Recent advances in nanomaterial-based wound-healing therapeutics[J]. Pharmaceutics, 2020, 12(6): 499. doi: 10.3390/pharmaceutics12060499 |
| [25] | SHU G, XU D, ZHANG W, et al. Preparation of shikonin liposome and evaluation of its in vitro antibacterial and in vivo infected wound healing activity[J]. Phytomedicine, 2022, 99: 154035. doi: 10.1016/j.phymed.2022.154035 |
| [26] | GONZALEZ GOMEZ A, HOSSEINIDOUST Z. Liposomes for antibiotic encapsulation and delivery[J]. ACS Infect Dis, 2020, 6(5): 896-908. doi: 10.1021/acsinfecdis.9b00357 |
| [27] | FERREIRA M, AGUIAR S, BETTENCOURT A, et al. Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors[J]. Drug Deliv Transl Res, 2021, 11(1): 72-85. doi: 10.1007/s13346-020-00791-8 |
| [28] | ELERAKY N E, ALLAM A, HASSAN S B, et al. Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations[J]. Pharmaceutics, 2020, 12(2): 142. doi: 10.3390/pharmaceutics12020142 |
| [29] | LI W Z, HAO X L, ZHAO N, et al. Propylene glycol-embodying deformable liposomes as a novel drug delivery carrier for vaginal fibrauretine delivery applications[J]. J Control Release, 2016, 226: 107-114. doi: 10.1016/j.jconrel.2016.02.024 |
| [30] | KIANVASH N, BAHADOR A, POURHAJIBAGHER M, et al. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects[J]. Drug Deliv Transl Res, 2017, 7(5): 654-663. doi: 10.1007/s13346-017-0405-4 |
| [31] | Ashaolu TJ. Nanoemulsions for health, food, and cosmetics: a review. Environ Chem Lett. 2021, 19(4): 3381-3395. |
| [32] | HOSNY K M, ALHAKAMY N A, SINDI A M, et al. Coconut oil nanoemulsion loaded with a statin hypolipidemic drug for management of burns: formulation and in vivo evaluation[J]. Pharmaceutics, 2020, 12(11): 1061. doi: 10.3390/pharmaceutics12111061 |
| [33] | RIZG W Y, HOSNY K M, ESHMAWI B A, et al. Tailoring of Geranium oil-based nanoemulsion loaded with pravastatin as a nanoplatform for wound healing[J]. Polymers, 2022, 14(9): 1912. doi: 10.3390/polym14091912 |
| [34] | CHEN H, CHENG R Y, ZHAO X, et al. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair[J]. NPG Asia Mater, 2019, 11: 3. doi: 10.1038/s41427-018-0103-9 |
| [35] | CHHIBBER T, GONDIL V S, SINHA V R. Development of chitosan-based hydrogel containing antibiofilm agents for the treatment of Staphylococcus aureus-infected burn wound in mice[J]. AAPS PharmSciTech, 2020, 21(2): 43. doi: 10.1208/s12249-019-1537-2 |
| [36] | MALISZEWSKA I, CZAPKA T. Electrospun polymer nanofibers with antimicrobial activity[J]. Polymers, 2022, 14(9): 1661. doi: 10.3390/polym14091661 |
| [37] | HAN W, Wang L, SUN J, et al. Dual-Drug-Loaded core-shell electrospun nanofiber dressing for deep burns[J]. ACS Appl Bio Mater, 2024, 7(2): 1179-1190. doi: 10.1021/acsabm.3c01091 |