[1] FUENTES P, ARMAREGO-MARRIOTT T, BOCK R. Plastid transformation and its application in metabolic engineering[J]. Curr Opin Biotechnol, 2018, 49:10-15. doi:  10.1016/j.copbio.2017.07.004
[2] CORRIVEAU J L, COLEMAN A W. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species[J]. American J Botany, 1988, 75(10):1443-1458. doi:  10.1002/j.1537-2197.1988.tb11219.x
[3] BHARADWAJ R, KUMAR SR, SATHISHKUMAR R. Green biotechnology: a brief update on plastid genome engineering[J]. Adv Plant Transgenics Methods Appl, 2019,20: 79-100.
[4] RODRÍGUEZ-EZPELETA N, BRINKMANN H, BUREY S C, et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes[J]. Curr Biol, 2005, 15(14):1325-1330. doi:  10.1016/j.cub.2005.06.040
[5] ZHOU J G, CHEN X L, CUI Y X, et al. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species[J]. Int J Mol Sci, 2017, 18(9):1839. doi:  10.3390/ijms18091839
[6] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3):403-410. doi:  10.1016/S0022-2836(05)80360-2
[7] SHI L C, CHEN H M, JIANG M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer[J]. Nucleic Acids Res, 2019, 47(W1):W65-W73. doi:  10.1093/nar/gkz345
[8] DUNN N A, UNNI D R, DIESH C, et al. Apollo: democratizing genome annotation[J]. PLoS Comput Biol, 2019, 15(2):e1006790. doi:  10.1371/journal.pcbi.1006790
[9] FRAZER K A, PACHTER L, POLIAKOV A, et al. VISTA: computational tools for comparative genomics[J]. Nucleic Acids Res, 2004, 32(Web Server issue): W273-W279.
[10] NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Mol Biol Evol, 2015, 32(1):268-274. doi:  10.1093/molbev/msu300
[11] XIONG B, WANG T, HUANG S J, et al. Analysis of Codon usage bias in xyloglucan endotransglycosylase(XET)genes[J]. Int J Mol Sci, 2023, 24(7):6108. doi:  10.3390/ijms24076108
[12] SHINOZAKI K, OHME M, TANAKA M, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression[J]. EMBO J, 1986, 5(9):2043-2049. doi:  10.1002/j.1460-2075.1986.tb04464.x
[13] ZHU T, ZHANG L, CHEN W, et al. Analysis of chloroplast genomes in 1 342 plants[J]. Genomics and Applied Biology, 2017, 36(10):4323-4333.
[14] HE Y, HAN L, LIU Y, et al. Complete sequence analysis of chloroplast genome of salvia japonica[J]. Bulletin of Botanical Research, 2017, 37(4):572-578.
[15] DANIELL H, LEE S B, GREVICH J, et al. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes[J]. Theor Appl Genet, 2006, 112(8):1503-1518. doi:  10.1007/s00122-006-0254-x
[16] SASKI C, LEE S B, FJELLHEIM S, et al. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes[J]. Theor Appl Genet, 2007, 115(4):571-590. doi:  10.1007/s00122-007-0567-4
[17] DANIELL H, LIN C S, YU M, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering[J]. Genome Biol, 2016, 17(1):134. doi:  10.1186/s13059-016-1004-2
[18] REN J, TIAN J, JIANG H, et al. Comparative and phylogenetic analysis based on the chloroplast genome of Coleanthus subtilis (tratt.) seidel, a protected rare species of monotypic genus[J]. Front Plant Sci, 2022, 13:828467. doi:  10.3389/fpls.2022.828467
[19] WANICHTHANARAK K, NOOKAEW I, PASOOKHUSH P, et al. Revisiting chloroplast genomic landscape and annotation towards comparative chloroplast genomes of Rhamnaceae[J]. BMC Plant Biol, 2023, 23(1):59. doi:  10.1186/s12870-023-04074-5
[20] HU J D, QIU S, WANG F Y, et al. Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia[J]. Nat Commun, 2023, 14(1):4696. doi:  10.1038/s41467-023-40401-y