| [1] | GOLLEDGE J, THANIGAIMANI S, POWELL J T, et al. Pathogenesis and management of abdominal aortic aneurysm[J]. Eur Heart J, 2023, 44(29):2682-2697. doi: 10.1093/eurheartj/ehad386 |
| [2] | BAMAN J R, ESKANDARI M K. What is an abdominal aortic aneurysm?[J]. JAMA, 2022, 328(22):2280. doi: 10.1001/jama.2022.18638 |
| [3] | FENTON C, TAN A R, ABARAOGU U O, et al. Prehabilitation exercise therapy before elective abdominal aortic aneurysm repair[J]. Cochrane Database Syst Rev, 2021, 7(7):CD013662. |
| [4] | BOSSONE E, EAGLE K A. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes[J]. Nat Rev Cardiol, 2021, 18(5):331-348. doi: 10.1038/s41569-020-00472-6 |
| [5] | GOLLEDGE J, MOXON J V, SINGH T P, et al. Lack of an effective drug therapy for abdominal aortic aneurysm[J]. J Intern Med, 2020, 288(1):6-22. doi: 10.1111/joim.12958 |
| [6] | ZHANG S M, LIU J, JIA X, et al. Investigating the inverse association between glycaemia and abdominal aortic dilatation in a large Chinese hypertensive population: a cross-sectional study[J]. Ann Transl Med, 2022, 10(7):419. doi: 10.21037/atm-22-1256 |
| [7] | BECKMAN J A, SULLIVAN A E. Lipoprotein(a), peripheral artery disease, and abdominal aortic aneurysm: the next frontier or another risk enhancer?[J]. J Am Coll Cardiol, 2023, 82(24):2277-2279. doi: 10.1016/j.jacc.2023.10.015 |
| [8] | KUGO H, MORIYAMA T, ZAIMA N. Nicotine induces Vasa vasorum stenosis in the aortic wall[J]. Biotech Histochem, 2024, 99(4):197-203. doi: 10.1080/10520295.2024.2352724 |
| [9] | MA Y, LI D K, CUI F P, et al. Air pollutants, genetic susceptibility, and abdominal aortic aneurysm risk: a prospective study[J]. Eur Heart J, 2024, 45(12):1030-1039. doi: 10.1093/eurheartj/ehad886 |
| [10] | SINCLAIR P, KABBANI N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors[J]. Pharmacol Res, 2023, 197:106975. doi: 10.1016/j.phrs.2023.106975 |
| [11] | WANG H, YU M, OCHANI M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation[J]. Nature, 2003, 421(6921):384-388. doi: 10.1038/nature01339 |
| [12] | ALEN N V. The cholinergic anti-inflammatory pathway in humans: State-of-the-art review and future directions[J]. Neurosci Biobehav Rev, 2022, 136:104622. doi: 10.1016/j.neubiorev.2022.104622 |
| [13] | XIA X M, DUAN Y, WANG Y P, et al. Vagus nerve stimulation as a promising neuroprotection for ischemic stroke via α7nAchR-dependent inactivation of microglial NLRP3 inflammasome[J]. Acta Pharmacol Sin, 2024, 45(7):1349-1365. doi: 10.1038/s41401-024-01245-4 |
| [14] | WEN C, XUE F S, WANG Y H, et al. Hypercholesterolemia attenuates cardioprotection of ischemic preconditioning and postconditioning with α7 nicotinic acetylcholine receptor agonist by enhancing inflammation and inhibiting the PI3K/Akt/ENOS pathway[J]. Exp Ther Med, 2022, 23(5):342. doi: 10.3892/etm.2022.11272 |
| [15] | LIN W H, LUO S Y, LI W, et al. Association between the non-HDL-cholesterol to HDL- cholesterol ratio and abdominal aortic aneurysm from a Chinese screening program[J]. Lipids Health Dis, 2023, 22(1):187. doi: 10.1186/s12944-023-01939-4 |
| [16] | SUN L K, LI X, LUO Z C, et al. Purinergic receptor P2X7 contributes to abdominal aortic aneurysm development via modulating macrophage pyroptosis and inflammation[J]. Transl Res, 2023, 258:72-85. doi: 10.1016/j.trsl.2023.03.002 |
| [17] | WANG S F, WANG J F, CAI D H, et al. Reactive oxygen species-induced long intergenic noncoding RNA p21 accelerates abdominal aortic aneurysm formation by promoting secretary smooth muscle cell phenotypes[J]. J Mol Cell Cardiol, 2023, 174:63-76. doi: 10.1016/j.yjmcc.2022.11.002 |
| [18] | PHIE J, THANIGAIMANI S, GOLLEDGE J. Systematic review and meta-analysis of interventions to slow progression of abdominal aortic aneurysm in mouse models[J]. Arterioscler Thromb Vasc Biol, 2021, 41(4):1504-1517. doi: 10.1161/ATVBAHA.121.315942 |
| [19] | GOLLEDGE J, LU H S, CURCI J A. Small AAAs: recommendations for rodent model research for the identification of novel therapeutics[J]. Arterioscler Thromb Vasc Biol, 2024, 44(7):1467-1473. doi: 10.1161/ATVBAHA.124.320823 |
| [20] | 付慧, 周灿灿, 李冬洁, 等. 腹主动脉瘤的研究进展: 病理机制及动物模型[J]. 中国医学科学院学报, 2022, 44(3):516-520. |
| [21] | HU J X, XU J M, ZHAO J L, et al. Colchicine ameliorates short-term abdominal aortic aneurysms by inhibiting the expression of NLRP3 inflammasome components in mice[J]. Eur J Pharmacol, 2024, 964:176297. doi: 10.1016/j.ejphar.2023.176297 |
| [22] | LIU S, XUE Y J, YIN R P, et al. 3, 4-Benzopyrene(Bap)aggravated abdominal aortic aneurysm formation by targeting pyroptosis in smooth muscle cells through ET-1 mediated NLRP3-inflammasome activation[J]. Int Immunopharmacol, 2023, 124(Pt A): 110851. |
| [23] | LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610):153-158. doi: 10.1038/nature18629 |
| [24] | ZHAI M C, GUO J Y, MA H Y, et al. Ursolic acid prevents angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice[J]. Atherosclerosis, 2018, 271:128-135. doi: 10.1016/j.atherosclerosis.2018.02.022 |
| [25] | CHEN W L, KAN C D, HUANG Y T, et al. Influence of endovascular surgery on abdominal aortic aneurysm management strategies from a national health insurance database survey[J]. J Chin Med Assoc, 2024, 87(12):1060-1067. doi: 10.1097/JCMA.0000000000001156 |
| [26] | ANAGNOSTAKOS J, LAL B K. Abdominal aortic aneurysms[J]. Prog Cardiovasc Dis, 2021, 65:34-43. doi: 10.1016/j.pcad.2021.03.009 |
| [27] | REN P P, WU D, APPEL R, et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice[J]. J Am Heart Assoc, 2020, 9(7):e014044. doi: 10.1161/JAHA.119.014044 |