| [1] | WALDMAN R H, GANGULY R. Immunity to infections on secretory surfaces[J]. J Infect Dis, 1974, 130(4):419-440. doi: 10.1093/infdis/130.4.419 |
| [2] | FEHR A R, PERLMAN S. Coronaviruses: an overview of their replication and pathogenesis[J]. Methods Mol Biol, 2015, 1282:1-23. |
| [3] | SHANNON A, SELISKO B, LE N, et al. Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase[J]. bioRxiv, 2020. |
| [4] | C E. WHO coronavirus disease(COVID-19)[M]. Weekly Epidemiological Update, 2021. |
| [5] | FORNI D, CAGLIANI R, CLERICI M, et al. Molecular evolution of human coronavirus genomes[J]. Trends Microbiol, 2017, 25(1):35-48. doi: 10.1016/j.tim.2016.09.001 |
| [6] | CUI J, LI F, SHI Z L. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3):181-192. doi: 10.1038/s41579-018-0118-9 |
| [7] | GÜNTHER S, REINKE P Y A, FERNÁNDEZ-GARCÍA Y, et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease[J]. Science, 2021, 372(6542):642-646. doi: 10.1126/science.abf7945 |
| [8] | GHOSH A K, GONG G L, GRUM-TOKARS V, et al. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors[J]. Bioorg Med Chem Lett, 2008, 18(20):5684-5688. doi: 10.1016/j.bmcl.2008.08.082 |
| [9] | ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273. doi: 10.1038/s41586-020-2012-7 |
| [10] | GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing[J]. Nature, 2020, 583(7816):459-468. doi: 10.1038/s41586-020-2286-9 |
| [11] | LAN J, GE J W, YU J F, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807):215-220. doi: 10.1038/s41586-020-2180-5 |
| [12] | XIA S, LIU M Q, WANG C, et al. Inhibition of SARS-CoV-2(previously 2019-nCoV)infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion[J]. Cell Res, 2020, 30(4):343-355. doi: 10.1038/s41422-020-0305-x |
| [13] | LI G D, HILGENFELD R, WHITLEY R, et al. Therapeutic strategies for COVID-19: progress and lessons learned[J]. Nat Rev Drug Discov, 2023, 22(6):449-475. doi: 10.1038/s41573-023-00672-y |
| [14] | LU Y, MING W, LI CZ, et al. Advances in peptidomimetic inhibitors of corona virus main protease[J]. Acta Pharm Sin, 2022(57):1977-1990. |
| [15] | PETTERSSON M, CREWS C M. PROteolysis TArgeting chimeras(PROTACs): past, present and future[J]. Drug Discov Today Technol, 2019, 31:15-27. doi: 10.1016/j.ddtec.2019.01.002 |
| [16] | CROMM P M, CREWS C M. Targeted protein degradation: from chemical biology to drug discovery[J]. Cell Chem Biol, 2017, 24(9):1181-1190. doi: 10.1016/j.chembiol.2017.05.024 |
| [17] | ZENG S X, HUANG W H, ZHENG X L, et al. Proteolysis targeting Chimera(PROTAC)in drug discovery paradigm: Recent progress and future challenges[J]. Eur J Med Chem, 2021, 210:112981. doi: 10.1016/j.ejmech.2020.112981 |
| [18] | CHIRNOMAS D, HORNBERGER K R, CREWS C M. Protein degraders enter the clinic: a new approach to cancer therapy[J]. Nat Rev Clin Oncol, 2023, 20:265-278. doi: 10.1038/s41571-023-00736-3 |
| [19] | YIN L N, HU Q Z. Chimera induced protein degradation: PROTACs and beyond[J]. Eur J Med Chem, 2020, 206:112494. doi: 10.1016/j.ejmech.2020.112494 |
| [20] | ALUGUBELLI Y R, XIAO J, KHATUA K, et al. Discovery of first-in-class PROTAC degraders of SARS-CoV-2 main protease[J]. J Med Chem, 2024, 67(8):6495-6507. doi: 10.1021/acs.jmedchem.3c02416 |
| [21] | NALAWANSHA D A, CREWS C M. PROTACs: an emerging therapeutic modality in precision medicine[J]. Cell Chem Biol, 2020, 27(8):998-1014. doi: 10.1016/j.chembiol.2020.07.020 |
| [22] | SANG X H, WANG J, ZHOU J, et al. A chemical strategy for the degradation of the main protease of SARS-CoV-2 in cells[J]. J Am Chem Soc, 2023, 145(50):27248-27253. doi: 10.1021/jacs.3c12678 |
| [23] | GADD M S, TESTA A, LUCAS X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation[J]. Nat Chem Biol, 2017, 13:514-521. doi: 10.1038/nchembio.2329 |
| [24] | PILLAIYAR T, FLURY P, KRÜGER N, et al. Small-molecule thioesters as SARS-CoV-2 main protease inhibitors: enzyme inhibition, structure-activity relationships, antiviral activity, and X-ray structure determination[J]. J Med Chem, 2022, 65(13):9376-9395. doi: 10.1021/acs.jmedchem.2c00636 |
| [25] | DE WISPELAERE M, DU G Y, DONOVAN K A, et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations[J]. Nat Commun, 2019, 10(1):3468. doi: 10.1038/s41467-019-11429-w |
| [26] | BOND M J, CREWS C M. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation[J]. RSC Chem Biol, 2021, 2(3):725-742. doi: 10.1039/D1CB00011J |
| [27] | TOURE M, CREWS C M. Small-molecule PROTACS: new approaches to protein degradation[J]. Angew Chem Int Ed, 2016, 55(6):1966-1973. doi: 10.1002/anie.201507978 |
| [28] | PETZOLD G, FISCHER E S, THOMÄ N H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN)ubiquitin ligase[J]. Nature, 2016, 532(7597):127-130. doi: 10.1038/nature16979 |
| [29] | ZHANG X H, LEE H C, SHIRAZI F, et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma[J]. Leukemia, 2018, 32(10):2224-2239. doi: 10.1038/s41375-018-0044-x |
| [30] | HAN K K, ZHAO D M, LIU Y Z, et al. The ubiquitin-proteasome system is necessary for the replication of duck Tembusu virus[J]. Microb Pathog, 2019, 132:362-368. doi: 10.1016/j.micpath.2019.04.044 |