| [1] | SUN Y L, SHEN Y M, LIU Q, et al. Global trends in melanoma burden: a comprehensive analysis from the global burden of disease study, 1990−2021[J]. J Am Acad Dermatol, 2025, 92(1): 100-107. doi: 10.1016/j.jaad.2024.09.035 |
| [2] | BOUFFET E, HANSFORD J R, GARRÈ M L, et al. Dabrafenib plus trametinib in pediatric glioma with BRAF V600 mutations[J]. N Engl J Med, 2023, 389(12): 1108-1120. doi: 10.1056/NEJMoa2303815 |
| [3] | LAU G, ABOU-ALFA G K, CHENG A L, et al. Outcomes in the Asian subgroup of the phase Ⅲ randomised HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma[J]. J Hepatol, 2025, 82(2): 258-267. doi: 10.1016/j.jhep.2024.07.017 |
| [4] | PETERS S, CHO B C, LUFT A V, et al. Durvalumab with or without tremelimumab in combination with chemotherapy in first-line metastatic NSCLC: five-year overall survival outcomes from the phase 3 POSEIDON trial[J]. J Thorac Oncol, 2025, 20(1): 76-93. doi: 10.1016/j.jtho.2024.09.1381 |
| [5] | ATKINS M B, LEE S J, CHMIELOWSKI B, et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq trial-ECOG-ACRIN EA6134[J]. J Clin Oncol, 2023, 41(2): 186-197. doi: 10.1200/JCO.22.01763 |
| [6] | SANGRO B, CHAN S L, KELLEY R K, et al. Four-year overall survival update from the phase Ⅲ HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma[J]. Ann Oncol, 2024, 35(5): 448-457. doi: 10.1016/j.annonc.2024.02.005 |
| [7] | HAMID O, HASSEL J C, SHOUSHTARI A N, et al. Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: a phase 1 study[J]. J Immunother Cancer, 2023, 11(6): e006747. doi: 10.1136/jitc-2023-006747 |
| [8] | COMIN-ANDUIX B, ESCUIN-ORDINAS H, IBARRONDO F J. Tremelimumab: research and clinical development[J]. Onco Targets Ther, 2016, 9: 1767-1776. |
| [9] | SCHOENFELD J D, GIOBBIE-HURDER A, RANASINGHE S, et al. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial[J]. Lancet Oncol, 2022, 23(2): 279-291. doi: 10.1016/S1470-2045(21)00658-6 |
| [10] | KUDRYAVTSEVA A V, KRASNOV G S, DMITRIEV A A, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer[J]. Oncotarget, 2016, 7(29): 44879-44905. doi: 10.18632/oncotarget.9821 |
| [11] | JELIC M D, MANDIC A D, MARICIC S M, et al. Oxidative stress and its role in cancer[J]. J Cancer Res Ther, 2021, 17(1): 22-28. doi: 10.4103/jcrt.JCRT_862_16 |
| [12] | GORRINI C, HARRIS I S, MAK T W. Modulation of oxidative stress as an anticancer strategy[J]. Nat Rev Drug Discov, 2013, 12(12): 931-947. doi: 10.1038/nrd4002 |
| [13] | CHENG Y T, YANG C C, SHYUR L F. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy[J]. Pharmacol Res, 2016, 114: 128-143. doi: 10.1016/j.phrs.2016.10.022 |
| [14] | DONOHOE C, SENGE M O, ARNAUT L G, et al. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1872(2): 188308. doi: 10.1016/j.bbcan.2019.07.003 |
| [15] | OBRADOR E, LIU-SMITH F, DELLINGER R W, et al. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma[J]. Biol Chem, 2019, 400(5): 589-612. doi: 10.1515/hsz-2018-0327 |
| [16] | DOUKI T. Oxidative stress and genotoxicity in melanoma induction: impact on repair rather than formation of DNA damage?[J]. Photochem Photobiol, 2020, 96(5): 962-972. doi: 10.1111/php.13278 |
| [17] | REMIGANTE A, SPINELLI S, MARINO A, et al. Oxidative stress and immune response in melanoma: ion channels as targets of therapy[J]. Int J Mol Sci, 2023, 24(1): 887. doi: 10.3390/ijms24010887 |
| [18] | GANAPATHY-KANNIAPPAN S, GESCHWIND J H. Tumor glycolysis as a target for cancer therapy: progress and prospects[J]. Mol Cancer, 2013, 12: 152. doi: 10.1186/1476-4598-12-152 |
| [19] | ALVAREZ C L, TRONCOSO M F, ESPELT M V. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion[J]. J Cell Physiol, 2022, 237(1): 389-400. doi: 10.1002/jcp.30580 |
| [20] | LEI Y L, ZHOU X, ZHAO Y, et al. Effects of exogenous ATP on melanoma growth and tumor metabolism in C57BL/6 mice[J]. Comp Med, 2022, 72(2): 93-103. doi: 10.30802/AALAS-CM-21-000099 |
| [21] | BARTMAN C R, WEILANDT D R, SHEN Y H, et al. Slow TCA flux and ATP production in primary solid tumours but not metastases[J]. Nature, 2023, 614(7947): 349-357. doi: 10.1038/s41586-022-05661-6 |
| [22] | JIANG Y, ZHOU H M, ZHAO W J, et al. ATP-triggered drug release of self-assembled 3D DNA nanostructures for fluorescence imaging and tumor therapy[J]. Anal Chem, 2022, 94(18): 6771-6780. doi: 10.1021/acs.analchem.2c00409 |