[1] SANTER R, CALADO J. Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target[J]. Clin J Am Soc Nephrol, 2010, 5(1): 133-141. doi:  10.2215/CJN.04010609
[2] 李丹. 靶向钠-葡萄糖转运蛋白2的新降糖候选药物的发现研究[J]. 医药卫生科技, 2017, 7(1): 1-99.
[3] SAXENA M, SRIVASTAVA N, BANERJEE M. Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus[J]. Mol Biol Rep, 2013, 40(11): 6271-6279. doi:  10.1007/s11033-013-2739-4
[4] VATS P, CHANDRA H, BANERJEE M. Glutathione S-transferase and Catalase gene polymorphisms with Type 2 diabetes mellitus[J]. Dis Mol Med, 2013, 1(3): 46. doi:  10.5455/dmm.20131027101207
[5] 王晶, 刘哲. 钠-葡萄糖同向转运蛋白2(SGLT2)及其抑制剂研究进展[J]. 延安大学学报(医学科学版), 2011, 9(3): 4-5. doi:  10.3969/j.issn.1672-2639.2011.03.002
[6] CHEN J, WILLIAMS S, HO S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members[J]. Diabetes Ther, 2010, 1(2): 57-92. doi:  10.1007/s13300-010-0006-4
[7] WANG S Q, SAID M A, GROOT H E, et al. Search for a functional genetic variant mimicking the effect of SGLT2 inhibitor treatment[J]. Genes, 2021, 12(8): 1174. doi:  10.3390/genes12081174
[8] ZIMDAHL H, HAUPT A, BRENDEL M, et al. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes[J]. Pharmacogenet Genomics, 2017, 27(4): 135-142. doi:  10.1097/FPC.0000000000000268
[9] KLEN J, DOLŽAN V. Treatment response to SGLT2 inhibitors: from clinical characteristics to genetic variations[J]. Int J Mol Sci, 2021, 22(18): 9800. doi:  10.3390/ijms22189800
[10] ENIGK U, BREITFELD J, SCHLEINITZ D, et al. Role of genetic variation in the human sodium-glucose cotransporter 2 gene(SGLT2)in glucose homeostasis[J]. Pharmacogenomics, 2011, 12(8): 1119-1126.
[11] BONNER C, KERR-CONTE J, GMYR V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion[J]. Nat Med, 2015, 21(5): 512-517. doi:  10.1038/nm.3828
[12] ORDELHEIDE A M, BÖHM A, KEMPE-TEUFEL D, et al. Common variation in the sodium/glucose cotransporter 2 gene SLC5A2 does neither affect fasting nor glucose-suppressed plasma glucagon concentrations[J]. PLoS One, 2017, 12(5): e0177148. doi:  10.1371/journal.pone.0177148
[13] JAMALIZADEH M, HASANZAD M, SARHANGI N, et al. Pilot study in pharmacogenomic management of empagliflozin in type 2 diabetes mellitus patients[J]. J Diabetes Metab Disord, 2021, 20(2): 1407-1413. doi:  10.1007/s40200-021-00874-4
[14] KLEN J, GORIČAR K, DOLŽAN V. Genetic variability in sodium-glucose cotransporter 2 influences glycemic control and risk for diabetic retinopathy in type 2 diabetes patients[J]. J Med Biochem, 2020, 39(3): 276-282. doi:  10.2478/jomb-2019-0040
[15] DREXEL H, LEIHERER A, SAELY C H, et al. Are SGLT2 polymorphisms linked to diabetes mellitus and cardiovascular disease? Prospective study and meta-analysis[J]. Biosci Rep, 2019, 39(8): BSR20190299. doi:  10.1042/BSR20190299
[16] KATZMANN J L, MASON A M, MÄRZ W, et al. Genetic variation in sodium-glucose cotransporter 2 and heart failure[J]. Clin Pharmacol Ther, 2021, 110(1): 149-158.
[17] RATHMANN W, BONGAERTS B. Pharmacogenetics of novel glucose-lowering drugs[J]. Diabetologia, 2021, 64(6): 1201-1212. doi:  10.1007/s00125-021-05402-w
[18] 侯幸赟, 郑骄阳. 2型糖尿病新一代降糖药的药物基因组学的最新进展[J]. 中国医院药学杂志, 2021, 41(1): 103-114. doi:  10.13286/j.1001-5213.2021.01.21
[19] MENG W, ELLSWORTH B A, NIRSCHL A A, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2(SGLT2)inhibitor for the treatment of type 2 diabetes[J]. J Med Chem, 2008, 51(5): 1145-1149. doi:  10.1021/jm701272q
[20] ZINMAN B, WANNER C, LACHIN J M, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22): 2117-2128. doi:  10.1056/NEJMoa1504720
[21] NEAL B, PERKOVIC V, MAHAFFEY K W, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7): 644-657. doi:  10.1056/NEJMoa1611925
[22] WIVIOTT S D, RAZ I, BONACA M P, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4): 347-357. doi:  10.1056/NEJMoa1812389
[23] MCMURRAY J J V, SOLOMON S D, INZUCCHI S E, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. doi:  10.1056/NEJMoa1911303
[24] PACKER M, ANKER S D, BUTLER J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. doi:  10.1056/NEJMoa2022190
[25] HEERSPINK H J L, STEFÁNSSON B V, CORREA-ROTTER R, et al. Dapagliflozin in patients with chronic kidney disease[J]. N Engl J Med, 2020, 383(15): 1436-1446. doi:  10.1056/NEJMoa2024816
[26] CHERNEY D Z I, HEERSPINK H J L, FREDERICH R, et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials[J]. Diabetologia, 2020, 63(6): 1128-1140. doi:  10.1007/s00125-020-05133-4
[27] PERKOVIC V, JARDINE M J, NEAL B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24): 2295-2306. doi:  10.1056/NEJMoa1811744
[28] WOODS T C, SATOU R, MIYATA K, et al. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus[J]. Am J Nephrol, 2019, 49(4): 331-342. doi:  10.1159/000499597
[29] HEERSPINK H J L, PERCO P, MULDER S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease[J]. Diabetologia, 2019, 62(7): 1154-1166. doi:  10.1007/s00125-019-4859-4
[30] YARIBEYGI H, BUTLER A E, ATKIN S L, et al. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: possible molecular pathways[J]. J Cell Physiol, 2018, 234(1): 223-230. doi:  10.1002/jcp.26851
[31] WANNER C, INZUCCHI S E, LACHIN J M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4): 323-334. doi:  10.1056/NEJMoa1515920
[32] FILIPPAS-NTEKOUAN S, TSIMIHODIMOS V, FILIPPATOS T, et al. SGLT-2 inhibitors: pharmacokinetics characteristics and effects on lipids[J]. Expert Opin Drug Metab Toxicol, 2018, 14(11): 1113-1121.
[33] 李钰哲, 王丽晖. 钠-葡萄糖共转运蛋白2抑制剂的研究进展[J]. 解放军医药杂志, 2019, 31(9): 112-116.
[34] SCHEEN A J. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2(SGLT2)inhibitors for the treatment of type 2 diabetes mellitus[J]. Drugs, 2015, 75(1): 33-59.
[35] KOHAN D E, FIORETTO P, TANG W H, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control[J]. Kidney Int, 2014, 85(4): 962-971. doi:  10.1038/ki.2013.356
[36] DONNAN J R, GRANDY C A, CHIBRIKOV E, et al. Comparative safety of the sodium glucose co-transporter 2(SGLT2)inhibitors: a systematic review and meta-analysis[J]. BMJ Open, 2019, 9(1): e022577. doi:  10.1136/bmjopen-2018-022577
[37] MATTHEWS D R, LI Q, PERKOVIC V, et al. Effects of canagliflozin on amputation risk in type 2 diabetes: the CANVAS Program[J]. Diabetologia, 2019, 62(6): 926-938. doi:  10.1007/s00125-019-4839-8
[38] CIANCIOLO G, DE PASCALIS A, CAPELLI I, et al. Mineral and electrolyte disorders with SGLT2i therapy[J]. JBMR Plus, 2019, 3(11): e10242. doi:  10.1002/jbm4.10242