[1] RUMGAY H, ARNOLD M, FERLAY J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77(6):1598-1606. doi:  10.1016/j.jhep.2022.08.021
[2] GUO D Z, HUANG A, WANG Y C, et al. Early detection and prognosis evaluation for hepatocellular carcinoma by circulating tumour DNA methylation: a multicentre cohort study[J]. Clin Transl Med, 2024, 14(5):e1652. doi:  10.1002/ctm2.1652
[3] SCHWAMBORN K, KRIEGSMANN M, WEICHERT W. MALDI imaging mass spectrometry: From bench to bedside[J]. Biochim Biophys Acta BBA Proteins Proteom, 2017, 1865(7):776-783. doi:  10.1016/j.bbapap.2016.10.014
[4] LIU C J, ZHANG L, SUN Y, et al. Application of CT and MRI images based on an artificial intelligence algorithm for predicting lymph node metastasis in breast cancer patients: a meta-analysis[J]. BMC Cancer, 2023, 23(1):1134. doi:  10.1186/s12885-023-11638-z
[5] OLTHOF E P, BERGINK-VOORTHUIS B J, WENZEL H H B, et al. Diagnostic accuracy of MRI, CT, and [18F] FDG-PET-CT in detecting lymph node metastases in clinically early-stage cervical cancer - a nationwide Dutch cohort study[J]. Insights Imaging, 2024, 15(1):36. doi:  10.1186/s13244-023-01589-1
[6] 高婧媛. 《影像学》: 医学影像学近现代发展历史及当代发展[J]. 磁共振成像, 2024, 15(8):236.
[7] SHENG J P, ZHANG J L, WANG L, et al. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny[J]. Gut, 2022, 71(6):1176-1191. doi:  10.1136/gutjnl-2021-324339
[8] LIU Y L, WANG B, MO X, et al. A deep learning workflow for mass-forming intrahepatic cholangiocarcinoma and hepatocellular carcinoma classification based on MRI[J]. Curr Oncol, 2022, 30(1):529-544. doi:  10.3390/curroncol30010042
[9] FAN H S, WANG B, SHI L H, et al. Monitoring minimal residual disease in patients with multiple myeloma by targeted tracking serum M-protein using mass spectrometry(EasyM)[J]. Clin Cancer Res, 2024, 30(6):1131-1142. doi:  10.1158/1078-0432.CCR-23-2767
[10] 冯鲍盛, 白玉, 刘虎威. 常压敞开式质谱成像技术及其应用[J]. 大学化学, 2013, 28(4):1-8. doi:  10.3969/j.issn.1000-8438.2013.04.001
[11] PANG H H, HU Z P. Metabolomics in drug research and development: The recent advances in technologies and applications[J]. Acta Pharm Sin B, 2023, 13(8):3238-3251. doi:  10.1016/j.apsb.2023.05.021
[12] 张莹, 陈岗, 陆豪杰, 等. MALDI质谱成像技术在非小细胞肺癌中的应用研究[J]. 质谱学报, 2007, 28(4):209-213.
[13] 蔡乐斯, 夏梦婵, 李展平, 等. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1):97-110.
[14] 罗志刚. 免标记、便捷的新型常压敞开式质谱分子成像技术与方法研究[D]. 北京: 北京协和医学院, 2012.
[15] YANG S, QIAN L, LI Z X, et al. Integrated multi-omics landscape of liver metastases[J]. Gastroenterology, 2023, 164(3): 407-423. e17.
[16] SALEH M, VIRARKAR M, BURA V, et al. Intrahepatic cholangiocarcinoma: pathogenesis, current staging, and radiological findings[J]. Abdom Radiol, 2020, 45(11):3662-3680. doi:  10.1007/s00261-020-02559-7
[17] 卞直鹏, 孙富海, 余霞客. 新形势下医学影像技术专业面临的挑战与对策[J]. 影像技术, 2015, 27(5):3-4. doi:  10.3969/j.issn.1001-0270.2015.05.01
[18] SUN D W, XU Z G, CAO S Y, et al. Imaging features based on CT and MRI for predicting prognosis of patients with intrahepatic cholangiocarcinoma: a single-center study and meta-analysis[J]. Cancer Imaging, 2023, 23(1):56. doi:  10.1186/s40644-023-00576-5
[19] 李志豪, 王蔚昕, 石高军, 等. 解吸电喷雾电离质谱成像技术及其在文件/文物检验中的应用[J]. 刑事技术, 2022, 47(4):342-346.
[20] BOLLWEIN C, GON\U04ABALVES J P L, UTPATEL K, et al. MALDI mass spectrometry imaging for the distinction of adenocarcinomas of the pancreas and biliary tree[J]. Molecules, 2022, 27(11):3464. doi:  10.3390/molecules27113464
[21] WEST C A, WANG M J, HERRERA H, et al. N-linked glycan branching and fucosylation are increased directly in hcc tissue As determined through in situ glycan imaging[J]. J Proteome Res, 2018, 17(10):3454-3462. doi:  10.1021/acs.jproteome.8b00323
[22] POWERS T W, HOLST S, WUHRER M, et al. Two-dimensional N-glycan distribution mapping of hepatocellular carcinoma tissues by MALDI-imaging mass spectrometry[J]. Biomolecules, 2015, 5(4):2554-2572. doi:  10.3390/biom5042554
[23] 盛奕琪. 股骨头坏死的质谱成像研究[D]. 北京: 中国石油大学(北京), 2023.
[24] 陈静, 谢佩斯, 蔡宗苇. 脂质质谱成像揭示三氯生促进三维肝癌肿瘤细胞球增长的相关机理[J]. 质谱学报, 2023, 44(2):213-222. doi:  10.7538/zpxb.2022.0181
[25] 孙菲, 王刚, 张金仿, 等. MALDI-TOF-MS在HBV相关肝癌蛋白质组学中的应用价值[J]. 中华实验和临床病毒学杂志, 2019, 33(1):95-98. doi:  10.3760/cma.j.issn.1003-9279.2019.01.021
[26] 陈兵, 何健, 曾昭冲, 等. 应用MALDI-TOF-MS检测原发性肝癌骨转移患者血清的多肽差异谱[J]. 肿瘤, 2012, 32(8):643-649.
[27] 李欣昕, 吴欢, 王晨, 等. 质谱成像技术及其在药学领域的应用[J]. 中国药科大学学报, 2014, 45(1):17-25.
[28] BUCHBERGER A R, DELANEY K, JOHNSON J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights[J]. Anal Chem, 2018, 90(1):240-265. doi:  10.1021/acs.analchem.7b04733
[29] ZHANG H R, ZHANG J Y, YUAN C X, et al. Recent advances in mass spectrometry imaging combined with artificial intelligence for spatially clarifying molecular profiles: Toward biomedical applications[J]. Trac Trends Anal Chem, 2024, 178:117834. doi:  10.1016/j.trac.2024.117834
[30] 王子璇. 脑卒中功能代谢特征的识别、空间定位和注释新方法研究及其在候选药物CZ-7体内分析中的应用[D]. 北京: 北京协和医学院, 2021.