[1] LONG G V, SHKLOVSKAYA E, SATGUNASEELAN L, et al. Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma[J]. Nat Med, 2025, 31(5): 1557-1566. doi:  10.1038/s41591-025-03512-1
[2] TERSTAPPEN G C, MEYER A H, BELL R D, et al. Strategies for delivering therapeutics across the blood-brain barrier[J]. Nat Rev Drug Discov, 2021, 20(5): 362-383. doi:  10.1038/s41573-021-00139-y
[3] MATHUR R, WANG Q X, SCHUPP P G, et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective[J]. Cell, 2024, 187(2): 446-463. e16.
[4] YOU H Y, ZHANG S L, ZHANG Y W, et al. Engineered bacterial outer membrane vesicles-based doxorubicin and CD47-siRNA co-delivery nanoplatform overcomes immune resistance to potentiate the immunotherapy of glioblastoma[J]. Adv Mater, 2025, 37(15): e2418053. doi:  10.1002/adma.202418053
[5] MI Z, YAO Q, QI Y, et al. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy[J]. Acta Pharm Sin B, 2023, 13(2): 819-833. doi:  10.1016/j.apsb.2022.09.016
[6] HERRMANN I K, WOOD M J A, FUHRMANN G. Extracellular vesicles as a next-generation drug delivery platform[J]. Nat Nanotechnol, 2021, 16(7): 748-759. doi:  10.1038/s41565-021-00931-2
[7] TOYOFUKU M, SCHILD S, KAPARAKIS-LIASKOS M, et al. Composition and functions of bacterial membrane vesicles[J]. Nat Rev Microbiol, 2023, 21(7): 415-430. doi:  10.1038/s41579-023-00875-5
[8] JI N, WANG F X, WANG M M, et al. Engineered bacterial extracellular vesicles for central nervous system diseases[J]. J Control Release, 2023, 364: 46-60. doi:  10.1016/j.jconrel.2023.10.027
[9] LIU H, ZHANG H, WANG S C, et al. Bone-targeted bioengineered bacterial extracellular vesicles delivering siRNA to ameliorate osteoporosis[J]. Compos Part B Eng, 2023, 255: 110610. doi:  10.1016/j.compositesb.2023.110610
[10] YAN X, LIU X Y, ZHANG D, et al. Construction of a sustainable 3-hydroxybutyrate-producing probiotic Escherichia coli for treatment of colitis[J]. Cell Mol Immunol, 2021, 18(10): 2344-2357. doi:  10.1038/s41423-021-00760-2
[11] XU X X, ZHANG Z Q, DU J W, et al. Recruiting T-cells toward the brain for enhanced glioblastoma immunotherapeutic efficacy by co-delivery of cytokines and immune checkpoint antibodies with macrophage-membrane-camouflaged nanovesicles[J]. Adv Mater, 2023, 35(25): e2209785. doi:  10.1002/adma.202209785
[12] REHMAN F U, LIU Y, YANG Q S, et al. Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy[J]. J Control Release, 2022, 345: 696-708. doi:  10.1016/j.jconrel.2022.03.036
[13] PÉREZ-LÓPEZ A, TORRES-SUÁREZ A I, MARTÍN-SABROSO C, et al. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines[J]. Adv Drug Deliv Rev, 2023, 196: 114816. doi:  10.1016/j.addr.2023.114816
[14] ZHU Z C, ZHAI Y X, HAO Y, et al. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by Angiopep-2 and TAT peptides[J]. J Extracell Vesicles, 2022, 11(8): e12255. doi:  10.1002/jev2.12255
[15] JIANG Y, YANG W J, ZHANG J, et al. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo[J]. Adv Mater, 2018, 30(30): e1800316. doi:  10.1002/adma.201800316
[16] ZHAO Y, QIN J, YU D H, et al. Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR-Cas gene editing[J]. Nat Nanotechnol, 2024, 19(12): 1869-1879. doi:  10.1038/s41565-024-01769-0
[17] RICHTER R, KAMAL M A M, KOCH M, et al. An outer membrane vesicle-based permeation assay(OMPA)for assessing bacterial bioavailability[J]. Adv Healthc Mater, 2022, 11(5): e2101180. doi:  10.1002/adhm.202101180
[18] PAN J M, LI X L, SHAO B F, et al. Self-blockade of PD-L1 with bacteria-derived outer-membrane vesicle for enhanced cancer immunotherapy[J]. Adv Mater, 2022, 34(7): e2106307. doi:  10.1002/adma.202106307
[19] TIAN T, LIANG R Y, EREL-AKBABA G, et al. Immune checkpoint inhibition in GBM primed with radiation by engineered extracellular vesicles[J]. ACS Nano, 2022, 16(2): 1940-1953. doi:  10.1021/acsnano.1c05505
[20] YUE Y L, XU J Q, LI Y, et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria[J]. Nat Biomed Eng, 2022, 6(7): 898-909. doi:  10.1038/s41551-022-00886-2
[21] LI Y, ZHAO R F, CHENG K M, et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition[J]. ACS Nano, 2020, 14(12): 16698-16711. doi:  10.1021/acsnano.0c03776
[22] ZHANG H Y, LI Z S, GAO C Y, et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Sci Robot, 2021, 6(52): eaaz9519. doi:  10.1126/scirobotics.aaz9519
[23] SUN B, LI R, JI N, et al. Brain-targeting drug delivery systems: the state of the art in treatment of glioblastoma[J]. Mater Today Bio, 2025, 30: 101443. doi:  10.1016/j.mtbio.2025.101443