| [1] | LI J, HE N P, WEI X H, et al. Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet Plateau grasslands[J]. PLoS One, 2015, 10(7): e0132795. doi: 10.1371/journal.pone.0132795 |
| [2] | LANGEN U H, AYLOO S, GU C H. Development and cell biology of the blood-brain barrier[J]. Annu Rev Cell Dev Biol, 2019, 35: 591-613. doi: 10.1146/annurev-cellbio-100617-062608 |
| [3] | MANFERDELLI G, MARZORATI M, EASTON C, et al. Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness[J]. Exp Physiol, 2021, 106(1): 76-85. doi: 10.1113/EP088515 |
| [4] | GONGGALANZI, LABASANGZHU, NAFSTAD P, et al. Acute mountain sickness among tourists visiting the high-altitude city of Lhasa at 3658 m above sea level: a cross-sectional study[J]. Arch Public Health, 2016, 74: 23. doi: 10.1186/s13690-016-0134-z |
| [5] | LI X Y, GAO F, LI Z Q, et al. Comparison of the pharmacokinetics of sulfamethoxazole in male Chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude: an open-label, controlled, prospective study[J]. Clin Ther, 2009, 31(11): 2744-2754. doi: 10.1016/j.clinthera.2009.11.019 |
| [6] | 李向阳, 格日力. 高原低氧影响药物代谢的研究进展[J]. 青海医学院学报, 2009, 30(2): 138-140,142. |
| [7] | 保宏翔, 陈竺, 陆小龙, 等. 急进高原对新兵认知功能的影响[J]. 第三军医大学学报, 2013, 35(14): 1498-1500. doi: 10.16016/j.1000-5404.2013.14.028 |
| [8] | ZHANG J H, WANG R. Changes in CYP3A4 enzyme expression and biochemical markers under acute hypoxia affect the pharmacokinetics of Sildenafil[J]. Front Physiol, 2022, 13: 755769. doi: 10.3389/fphys.2022.755769 |
| [9] | 黄隆基, 张晓静, 罗林, 等. 高原环境对格列喹酮药代动力学参数的影响[J]. 浙江大学学报(医学版), 2022, 51(4): 389-396. doi: 10.3724/zdxbyxb-2022-0129 |
| [10] | DU SOUICH P, COURTEAU H, KOBUSCH A B, et al. Effect of hypoxia on the cytochrome P-450 and theophylline metabolism[J]. Eur J Pharmacol, 1990, 183(6): 2122-2123. doi: 10.1016/0014-2999(90)93641-3 |
| [11] | DU SOUICH P, HARTEMANN D, SAUNIER C. Effect of acute and chronic moderate hypoxia on diltiazem kinetics and metabolism in the dog[J]. Pharmacology, 1993, 47(6): 378-385. doi: 10.1159/000139121 |
| [12] | GOLA S, KESHRI G K, GUPTA A. Hepatic metabolism of ibuprofen in rats under acute hypobaric hypoxia[J]. Exp Toxicol Pathol, 2013, 65(6): 751-758. doi: 10.1016/j.etp.2012.11.001 |
| [13] | ZHU J B, YANG J X, NIAN Y Q, et al. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia[J]. Front Pharmacol, 2021, 12: 692349. doi: 10.3389/fphar.2021.692349 |
| [14] | RITSCHEL W A, PAULOS C, ARANCIBIA A, et al. Pharmacokinetics of meperidine in healthy volunteers after short- and long-term exposure to high altitude[J]. J Clin Pharmacol, 1996, 36(7): 610-616. doi: 10.1002/j.1552-4604.1996.tb04225.x |
| [15] | ZHANG J L, ZHU J B, YAO X C, et al. Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese Han volunteers living at low altitude and in native Han and Tibetan Chinese volunteers living at high altitude[J]. Pharmacology, 2016, 97(3-4): 107-113. doi: 10.1159/000443332 |
| [16] | ZHAO A P, LI W B, WANG R. The influences and mechanisms of high-altitude hypoxia exposure on drug metabolism[J]. Curr Drug Metab, 2023, 24(3): 152-161. doi: 10.2174/1389200224666221228115526 |
| [17] | 黄琴, 罗林, 王兆彦, 等. 高原缺氧对阿托伐他汀钙在高脂血症大鼠体内药动学及药效学的影响[J]. 中国药理学通报, 2023, 39(7): 1227-1233. doi: 10.12360/CPB202209058 |
| [18] | 周杨, 朱俊博, 段雅彬, 等. 高原缺氧对氯沙坦钾代谢动力学的影响[J]. 中国高原医学与生物学杂志, 2021, 42(4): 223-233. |
| [19] | 张娟玲, 李向阳. 高原低氧影响药物代谢的研究进展[J]. 药学学报, 2015, 50(9): 1073-1079. doi: 10.3870/j.issn.1004-0781.2024.06.015 |
| [20] | LI X Y, LIU Y N, LI Y P, et al. Pharmacokinetics of sulfamethoxazole in healthy Han volunteers living at plain and in native Han and Tibetan healthy volunteers living at high altitude[J]. Yao Xue Xue Bao, 2011, 46(9): 1117-1122. |
| [21] | 白雪, 刘贵琴, 杨建鑫, 等. 肠道菌群介导高原低氧对药物代谢的调节[J]. 药学学报, 2021, 56(10): 2787-2796. doi: 10.16438/j.0513-4870.2021-0805 |
| [22] | SHREINER A B, KAO J Y, YOUNG V B. The gut microbiome in health and in disease[J]. Curr Opin Gastroenterol, 2015, 31(1): 69-75. doi: 10.1097/MOG.0000000000000139 |
| [23] | 段雅彬, 朱俊博, 杨建鑫, 等. microRNA介导低氧对药物代谢酶和转运体的调控[J]. 药学学报, 2021, 56(1): 50-60. doi: 10.16438/j.0513-4870.2020-0964 |
| [24] | KURDI J, MAURICE H, EL-KADI A O, et al. Effect of hypoxia alone or combined with inflammation and 3-methylcholanthrene on hepatic cytochrome P450 in conscious rabbits[J]. Br J Pharmacol, 1999, 128(2): 365-373. doi: 10.1038/sj.bjp.0702795 |
| [25] | FRADETTE C, BATONGA J, TENG S, et al. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver[J]. Drug Metab Dispos, 2007, 35(5): 765-771. doi: 10.1124/dmd.106.013508 |
| [26] | LI X Y, WANG X J, LI Y P, et al. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats[J]. Pharmacology, 2014, 93(1-2): 76-83. doi: 10.1159/000358128 |
| [27] | SUZUKI E, MATSUNAGA T, AONUMA A, et al. Effects of hypoxia-inducible factor-1a chemical stabilizer, CoCl2 and hypoxia on gene expression of CYP3As in human fetal liver cells[J]. Drug Metab Pharmacokinet, 2012, 27(4): 398-404. doi: 10.2133/dmpk.DMPK-11-RG-074 |
| [28] | ZHOU X J, NIAN Y Q, QIAO Y J, et al. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude[J]. Curr Drug Metab, 2018, 19(11): 960-969. doi: 10.2174/1389200219666180529112913 |
| [29] | ZHU J B, DUAN Y B, DUO D L, et al. High-altitude hypoxia influences the activities of the drug-metabolizing enzyme CYP3A1 and the pharmacokinetics of four cardiovascular system drugs[J]. Pharmaceuticals, 2022, 15(10): 1303. doi: 10.3390/ph15101303 |
| [30] | LI W B, JIA Z P, XIE H, et al. Effect of acute exposure to high altitude on the pharmacokinetics of propranolol[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2013, 38(9): 909-914. |
| [31] | 张赛, 符锋. 亚低温治疗对循环系统的影响[J]. 中华神经创伤外科电子杂志, 2018(5): 313-316. doi: 10.3877/cma.j.issn.2095-9141.2018.05.015 |
| [32] | DU SOUICH P, FRADETTE C. The effect and clinical consequences of hypoxia on cytochrome P450, membrane carrier proteins activity and expression[J]. Expert Opin Drug Metab Toxicol, 2011, 7(9): 1083-1100. doi: 10.1517/17425255.2011.586630 |
| [33] | 王建军, 周斌, 鞠钟鸣, 等. 高原特殊环境对药物代谢影响的研究进展[J]. 中国临床药理学杂志, 2016, 32(17): 1629-1632. doi: 10.13699/j.cnki.1001-6821.2016.17.025 |
| [34] | 魏应凤, 梁雁, 林臣鸿, 等. 无菌动物在肠-肝轴研究中的应用前景[J]. 中国实验动物学报, 2017, 25(6): 671-675. doi: 10.3969/j.issn.1005-4847.2017.06.016 |
| [35] | LYNCH T, PRICE A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects[J]. Am Fam Physician, 2007, 76(3): 391-396. doi: 10.1007/s12024-010-9188-3 |
| [36] | GOLA S, GUPTA A, KESHRI G K, et al. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude[J]. J Pharm Biomed Anal, 2016, 121: 114-122. doi: 10.1016/j.jpba.2016.01.018 |
| [37] | LI W B, JIA Z P, XIE H, et al. Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(8): 1203-1206. |
| [38] | WANG R, SUN Y H, YIN Q, et al. The effects of metronidazole on Cytochrome P450 Activity and Expression in rats after acute exposure to high altitude of 4300m[J]. Biomed Pharmacother, 2017, 85: 296-302. doi: 10.1016/j.biopha.2016.11.024 |
| [39] | DUAN Y B, ZHU J B, YANG J X, et al. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR[J]. Front Pharmacol, 2020, 11: 574176. doi: 10.3389/fphar.2020.574176 |
| [40] | MIX J, ELON L, VI THIEN MAC V, et al. Hydration status, kidney function, and kidney injury in Florida agricultural workers[J]. J Occup Environ Med, 2018, 60(5): e253-e260. doi: 10.1097/JOM.0000000000001261 |
| [41] | ZHANG J H, ZHANG J M, WANG R, et al. Effects of gut microbiota on drug metabolism and guidance for rational drug use under hypoxic conditions at high altitudes[J]. Curr Drug Metab, 2019, 20(2): 155-165. doi: 10.2174/1389200219666181019145159 |
| [42] | 王凡, 王宏娟, 古同男, 等. 肠道微生物与相关疾病的研究进展[J]. 重庆医学, 2018, 47(18): 2487-2489. |
| [43] | HAN N, PAN Z Y, LIU G W, et al. Hypoxia: the “invisible pusher” of gut microbiota[J]. Front Microbiol, 2021, 12: 690600. doi: 10.3389/fmicb.2021.690600 |
| [44] | 汪冬, 周其全. 高原缺氧环境下肠道菌群紊乱与急性重症高原病[J]. 胃肠病学和肝病学杂志, 2017, 26(2): 222-226. |
| [45] | ADAK A, MAITY C, GHOSH K, et al. Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation[J]. Folia Microbiol, 2013, 58(6): 523-528. doi: 10.1007/s12223-013-0241-y |
| [46] | SUZUKI T A, MARTINS F M, NACHMAN M W. Altitudinal variation of the gut microbiota in wild house mice[J]. Mol Ecol, 2019, 28(9): 2378-2390. doi: 10.1111/mec.14905 |
| [47] | LI L, ZHAO X. Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing[J]. Sci Rep, 2015, 5: 14682. doi: 10.1038/srep14682 |
| [48] | ZHANG J H, CHEN Y Y, SUN Y M, et al. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine[J]. Drug Deliv, 2018, 25(1): 1175-1181. doi: 10.1080/10717544.2018.1469687 |
| [49] | ZENG B, ZHANG S Y, XU H L, et al. Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments[J]. Microbiol Res, 2020, 235: 126447. doi: 10.1016/j.micres.2020.126447 |
| [50] | ZHANG J H, ZHANG J M, WANG R. Gut microbiota modulates drug pharmacokinetics[J]. Drug Metab Rev, 2018, 50(3): 357-368. doi: 10.1080/03602532.2018.1497647 |
| [51] | 张娟红, 张雅婷, 张军民, 等. 急进高原后肠道菌群介导的溴吡斯的明体内代谢研究[J]. 药物评价研究, 2022, 45(3): 428-433. doi: 10.7501/j.issn.1674-6376.2022.03.004 |
| [52] | 周雪姣. 高原低氧对药物转运体MDR1、MRP1和BCRP的影响[D]. 西宁: 青海大学, 2018. |
| [53] | 赵元辰, 崔乃强. 胆汁酸与肠道菌群相关性研究进展[J]. 中国中西医结合外科杂志, 2018, 24(5): 666-671. doi: 10.3969/j.issn.1007-6948.2018.05.036 |
| [54] | SELWYN F P, CHENG S L, KLAASSEN C D, et al. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics[J]. Drug Metab Dispos, 2016, 44(2): 262-274. doi: 10.1124/dmd.115.067504 |
| [55] | SPANOGIANNOPOULOS P, BESS E N, CARMODY R N, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism[J]. Nat Rev Microbiol, 2016, 14(5): 273-287. doi: 10.1038/nrmicro.2016.17 |
| [56] | NOH K, KANG Y R, NEPAL M R, et al. Impact of gut microbiota on drug metabolism: an update for safe and effective use of drugs[J]. Arch Pharm Res, 2017, 40(12): 1345-1355. doi: 10.1007/s12272-017-0986-y |
| [57] | KUMAR K, JAISWAL S K, DHOKE G V, et al. Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme[J]. J Cell Biochem, 2018, 119(7): 5287-5296. doi: 10.1002/jcb.26638 |
| [58] | HAISER H J, GOOTENBERG D B, CHATMAN K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta[J]. Science, 2013, 341(6143): 295-298. doi: 10.1126/science.1235872 |
| [59] | POLLET R M, D’AGOSTINO E H, WALTON W G, et al. An atlas of β-glucuronidases in the human intestinal microbiome[J]. Structure, 2017, 25(7): 967-977. e5. |
| [60] | YOO D H, KIM I S, VAN LE T K, et al. Gut microbiota-mediated drug interactions between lovastatin and antibiotics[J]. Drug Metab Dispos, 2014, 42(9): 1508-1513. doi: 10.1124/dmd.114.058354 |