[1] |
Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery[J]. Eur J Pharm Sci, 2001, 14(2):101-114. |
[2] |
Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery[J]. Adv Drug Deliv Rev, 2011, 63(6):470-491. |
[3] |
Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis[J]. Chem Phys Lipids, 2012, 165(4):454-461. |
[4] |
Bachhav YG, Mondon K, Kalia YN, et al. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals[J]. J Control Release, 2011, 153(2):126-132. |
[5] |
Vijayan V, Reddy KR, Sakthivel S, et al. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs:in vitro and in vivo studies[J]. Colloids Surf B Biointerfaces, 2013, 1(111):150-155. |
[6] |
Agrawal U, Mehra NK, Gupta U et al. Hyperbranched dendritic nano-carriers for topical delivery of dithranol[J]. J Drug Target,2013, 21(5):497-506. |
[7] |
Chen Y, Wang M, Fang L. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems[J]. Drug Deliv, 2013, 20(5):199-209. |
[8] |
Rancan F, Papakostas D, Hadam S, et al. Investigation of polylactic acid(PLA) nanoparticles as drug delivery systems for local dermatotherapy[J]. Pharm Res, 2009, 26(8):2027-2036. |
[9] |
Shah PP, Desai PR, Channer D, et al. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers[J]. J Controlled Release, 2012, 161(3):735-745. |
[10] |
Shah PP, Desai PR, Patel AR, et al. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs[J]. Biomaterials, 2012, 33(5):1607-1617. |
[11] |
Yang Y, Sunoqrot S, Stowell C, et al. Effect of size, surface charges, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration[J]. Biomacromolecules,2012, 13(7):2154-2162. |
[12] |
O'Leary J, Muggia FM. Camptothecins:a review of their development and schedules of administration[J]. Eur J Cancer, 1998,34(10):1500-1508. |
[13] |
Min KH, Park K, Kim YS, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy[J]. J Control Release,2008, 127(3):208-218. |
[14] |
Andrew J. Jennifer K. Carmen J, et al. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors[J]. Drug Deliv Transl Res,2011,1(1):34-42. |
[15] |
Castillo PM, de la Mata M, Casula MF, et al. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system[J]. Beilstein J Nanotechnol, 2014, 5:1312-1319. |
[16] |
Zhang L, Hu Y, Jiang X, et al. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice[J]. J Control Release, 2004, 96(1):135-148. |
[17] |
Botella P, Abasolo I, Fern ndez Y, et al. Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation[J].J Control Release,2011,156(2):246-257. |