

图 1 川芎样品的毛细管电泳图 1. 内标 12.90min; 2. 阿魏酸 16.13min 表 1 日内和日间精密度

浓度	RSD% (n = 3)	
(μg∕ml)	日内	日间
10	1.45	1.88
50	1.40	1.50
100	0.62	1.08

表明测定方法的重现性良好。其加样回收率 结果见表 2。

表 2 加样回收率结果

样品	加入量(mg)	回收率(%)	RSD%(n=3)
川芎	0.8	101.57	1.58

(三)样品测定

利用所建立的分离测定方法对川芎中的 阿魏酸进行了测定,测定结果见表 3,令人满 意。

表 3 样品的测定结果

川芎	含量(%)	RSD% (n = 3)
样品1	0.082	1.47
样品 2	0.119	1.37

参考文献

- [1]罗国安和王义明.色谱,1995,13(4):254
- [2] Renata J. O., Danuta R., Piotr K. et al. J. chromatogr. a, 1995, 709:197
- [3] Sheu S. J. and Lu C. F. J. High resol. chromatogr., 1995, 18; 269
- [4]中国药典. 二部.1995:30
- [5]钱芳,燕恩慈. 中成药,1990;12(4):9
- [6]戴忠,钱忠直,侯钦云.中成药,1997;19(7):9

HPLC 法测定两性霉素 B 含量

罗 东 马文秀 代 青 刘松青 (第三军医大学西南医院药剂科 重庆 400038)

摘要 目的:用高效液相色谱法测定两性霉素 B含量。方法:外标法定量,色谱柱为 μ – Bondapak C柱 (10 μ m,3.9mm×300mm);流动相为乙腈 – 磷酸盐缓冲液(pH6.20)(55:45, v/v),其中含 0.02mol/L四丁基溴化铵;流速 1.2ml/min;检测波长 405nm。结果:两性霉素 B浓度在 3.0~21.0 μ g/ml 范围内线性关系良好,其相关系数 r = 0.9997,本方法的平均回收率为 102.94 ± 2.17%,日内和日间相对标准偏差分别平均为 2.80%和 5.25%。结论:该方法简便、快速、准确、重现性好。

关键词 两性霉素 B;含量测定;HPLC

两性霉素 B(Amphotericin B)为多烯类抗深部真菌感染药物。临床上应用已有 30 余年。虽然新的抗真菌药物如唑类抗真菌药物

不断被开发应用。但两性霉素 B 仍作为许 多真菌感染的首选药物广泛用于临床^[1]。中 国药典和美国药典对两性霉素 B 的含量测 定均采用抗生素微生物检定法^[2,3],但该方 法操作繁琐,费时。本文建立 HPIC 法测定 两性霉素 B含量的方法,该方法快速、简便, 专属性强,重现性好。

一、仪器与试药

(一)仪器

Waters 810 液相色谱系统(包括 510 泵、484 可变波长紫外检测器、U6K 型进样器、Baseline 计算机控制及处理系统), Φ21 型 pH 计(美国贝克曼), H66025 超声波清洗机(无锡市超声电子设备厂)。

(二)试药

两性霉素 B 对照品(中国药品生物制品 检定所)。两性霉素 B 粉针剂(25mg/支,上 海先锋药业公司)。

乙腈为色谱纯;磷酸二氢钾、磷酸氢二钾、四丁基溴化铵、二甲基亚砜均为分析纯。

二、实验方法与结果

(一)色谱条件

色谱柱: μ – Bondapak C_{18} 柱 (3.9mm × 300mm, 10μ m); 流动相: 乙腈 – 磷酸盐缓冲液 (pH6.20) (55:45, v/v), 其中加入 0.02mol/L 四丁基溴化铵, 经超声脱气处理, 流速: 1.2ml/min; 柱温: $35 \pm 1^{\circ}$ C, 检测波长: 405nm; 灵敏度: 0.05AUFS; 进样量: 20μ l。在此色谱条件下的色谱图见图 1。

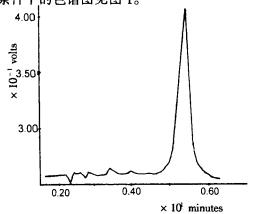


图1 两性霉素 B色谱图

(二)标准溶液的配制

精密称取两性霉素 B 对照品 30mg 于量

瓶中,加二甲基亚砜溶解配成含两性霉素 BO.3mg/ml的标准溶液备用。

(三)标准曲线制备

精密量取标准液 $0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.7$ ml 分别置 10ml 量瓶中,加蒸馏水稀释至刻度,混匀,进样 20μl,连续进样 3 次,计算峰面积 A 与浓度 C 的关系。其回归方程为: $C=2.024 \times 10$ A -0.1142,r=0.9997 线性范围为 3.0μg/ml $\sim 21.$ μg/ml。

(四)回收率及精密度

配制 3 份不同浓度的两性霉素 B 溶液, 每个浓度进样 3 次, 测得峰面积代入回归方程计算浓度, 得两性霉素 B 的回收率, 结果见表 1。

表1 两性霉素 B的回收率试验结果(n=3)

投入量	测得量	回收率	平均回收率	RSD
(mg/ml)	(mg/ml)	(%)	$\tilde{x} \pm SD$	(%)
10.0	10.55	105.48		
15.0	15.19	101.29	102.94 ± 2.23	2.17
20.0	20.41	102.06		

配制 2 份不同浓度的两性霉素 B 溶液, 在一日内连续进样 10 次,测得日内相对标准 偏差;每天测定一次连续测定 5 天,得日间相 对标准偏差,结果见表 2。

表 2 两性霉素 B的精密度测定结果

加人量	日内(n=10)		日间(n=5)	
(mg/ml)	测得量 (mg/ml)	RSD (%)	测得量 (mg/ml)	RSD (%)
12.0	11.80 ± 0.44	3.73	12.14 ± 0.22	6.30
18.0	17.69 ± 0.33	1.87	17.40 ± 0.24	4.21

(五)两性霉素 B 的含量测定 测定 3 个不同批号的两性霉素 B,其含量分别为25.72、24.98、25.24mg/ml,分别为标示量的102.87%、99.93%、100.98%。

三、讨论

流动相的选择:观察两性霉素 B 在 5 种不同流动相中的色谱特点,选择了乙腈 - 磷酸盐缓冲液作为流动相。调整流动相中各组分的比例发现,当缓冲液比例较大时,两性霉素 B 出峰时间延长,且峰加宽,反之,缓冲液比例较小时,出峰时间缩短。流动相的 pH

值改变对两性霉素 B 的容量因子 K'影响较大,当流动相中磷酸盐缓冲液 pH < 6 时,pH 值越小,K'增大,pH 值增大时 K'随 pH 值的增大而呈下降趋势;当磷酸盐缓冲液 pH 调至 6.20 时,其两性霉素 B 的 K'变化相对稳定。故选定乙腈 - 磷酸盐缓冲液(pH6.20)(55:45,v/v)作流动相,此时两性霉素 B 峰形对称,柱效高,保留时间短(为 5.4min),且能与分解物及杂质峰分开,测定样品周期为6.5min。由于两性霉素 B 具多烯、多羟基结构,且碳链较长,这可能是造成两性毒素 B 出峰时间及峰形不很稳定的原因,加人0.02mol/L四丁基溴化铵,可使两性霉素 B 的出峰时间和峰形相对稳定,有利于样品的

测定。

样品的稳定性:将测定样品在室温避光与不避光放置,每 1h 测一次含量,其结果为避光的样品在 5h 内含量与 0h 相比变化 < 1%,而不避光的样品含量下降 > 6%,故本实验要求在避光条件下进行,并在 4h 内完成样品测定为最佳。

参考文献

- [1] Gallis HA. Drew RH. Pickard WW. Amphotericin B:30 year of clinical experience. Rer Infect Dis, 1990; 12:308 ~ 29
- [2]中国药典.1995年版.二部:272~3
- [3]USP XXIV .1995,1:105
- [4] Mechinski W. Schaffiner C. Separation of polyene antifungal antibiotics by highspeed liquid chromatography. J chomtogra. 1974;99:619

一阶导数光谱法测定泻立宁合剂中诺氟沙星的含量

程 宓 韩福鹏 徐世清(丹东空军医院 丹东 118008)

摘要 本文采用一阶导数光谱法测定泻立宁合剂中诺氟沙星的含量,不受辅料和其它成分的干扰,简便、快速。平均回收率为99.95%,RSD为0.88%。

关键词 诺氟沙星;一阶导数光谱法;含量测定

泻立宁是我院自行研制的一种抗菌、止泻的药物,是由诺氟沙星、硫酸庆大霉素、陈皮酊、颠茄酊、复方樟脑酊等组成的复方制剂。其主要成分诺氟沙星含量按资料^[1]方法测定,在紫外区受到其它组分的干扰,本文采用一阶导数光谱法,不经分离直接测定诺氟沙星的含量,获得满意的结果。

一、仪器与试药

UV-2401PC、UVPC37 软件(日本岛津); 486 微机; EXce17.0(美国微软公司); pHS-4 型酸度计(杭州亚美电子仪器厂); 诺氟沙星 (沈阳第六制药厂, 批号 9705142); 硫酸庆大 霉素、陈皮酊、颠茄酊、樟脑酊、聚山梨酯-80、冰醋酸等(均符合中国药典九五年版各药 项下的有关规定)。

二、实验方法与结果

(一)处方

诺氟沙星 6.0g, 硫酸庆大霉素 2.4g, 陈皮酊 100ml, 颠茄酊 30.0ml, 复方樟脑酊 150ml, 聚山梨酯 - 80 20.0ml, 冰醋酸适量, 蒸馏水加至 3000ml。

(二)制法

甲液:将诺氟沙星溶于适量冰醋酸中,硫酸庆大霉素溶于适量蒸馏水中,两液混匀。 乙液:取陈皮酊、复方樟脑酊、颠茄酊与聚山 梨酯-80混匀,缓缓加入适量蒸馏水中,搅匀。将甲液缓缓加入乙液中随加随搅拌,调至pH值4.0~5.0,加水使至全量,分装为