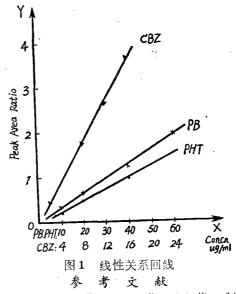
响。初步观察表明:当pH=6.5时,内标和药物有较高的回收率;当pH<6时,苯巴比妥、苯妥英的回收率升高,卡马西平下降;当pH>7.4时,苯巴比妥,苯妥英回收率下降,卡马西平回收率稍有上升。结果与卓海通等 $^{(3)}$ 报道基本一致。因此,我们选择在pH=6.5的磷酸盐缓冲液中进行提取。


本文在采用乙腈沉淀和pH = 6.5的条件下,考察了常用的提取溶剂CH₂Cl₂,CHCl₃,乙醚、醋酸乙酯等的提取效果,确定了氯仿一乙醚(2:1)二元溶剂为提取液。从而兼顾了提高提取率,克服血清内源性组分干扰,减少乳化,便于操作、缩短蒸干时程等诸项要求、结果满意。

二、色谱条件选择

- 1.流动相:许多文献 (1-5) 报道都 采用乙腈和磷酸盐缓冲液 (pH3~8)作为流动相组分。我们认为:这种组成除分析成本高外,盐类的使用还对管路和柱的清洗提出了较高的要求,因而大大延长了非分析占机时间。经实验,我们采用 的 甲 醇 一 水(47/53 v/V)流动相既克服了上述缺点,又获得了理想的分析效果。
- 2. 色谱柱: Tjaded等 ⁽⁶⁾ 认为甲基硅烷键合相对巴比妥类药物的分离效 果 优 于 C₈或C₁₈柱。据此,我们考察了C₃、C₁₈、TMS对三种药物及内标的分离效果,以TMS、柱的分离效果和分析时间最为满意。
- 3. 检测波长: 国外报道的检测波长大都 在 195~210nm (12/14) ⁽¹⁾。 我 们 对 210、220、230、240、254nm几个波长进行 了考察,结果表明230nm以下处,基线不够

平稳,血清空白值较大;254nm处检出灵敏度较低。因而选择240nm做为检测波长。

三、样品稳定性考察表明:药物 血清 \mathbb{I} 、 \mathbb{I} 、 \mathbb{I} 、 \mathbb{I} 、 \mathbb{I} 在 -15 C保存24小时各药平均回收率分别是: PB99.63 \pm 4.12%, PHT 102.82 \pm 3.98%, CBZ 96.82 \pm 2.29%, 48 小时、72小时测定结果,回收率下降。因此取样后应置于 -15 C冰箱内,并于24小时内完成测定。

- 1. 于宝成: 国外药学(合成药、生化药、制剂分册) 1988; 5: 296
- 2. 吴莱文等: 中华医学检验杂志 1985; 8: 90
- 3. 卓海通等:南京军区药学专业委员会第一次会议论文摘要汇编 P7
- 4. Adam RF.et al. clin chem 1976; 22:25
- 5. Kabra PM.et al. clin chem 1977, 23: 1284
- 6. Tjaded UR et al. J chromatogr 1977; 143: 183

羟乙基淀粉及其注射液的分光光度测定法

总后卫生部药品仪器检验所 刘志邦

羟乙基淀粉属多糖类化合物,其注射液 有增加并维持血液胶体渗透压、增加血浆容 量、维持血压等作用。临床上用于治疗出血性休克、创伤性休克及烧伤休克等。原料药

品没有含量测定方法, 其注射液的 含量 测 定,我国地方标准大都采用重量法(1·2)。 专属性差,且费时、费事。国外很早就报道 用蔥酮显色反应对多糖进行定性与定量测定 (3),国内的教科书记载了用蒽酮比色法测定 糖的含量(4),并应用于复方制剂中羟乙基淀 粉的含量测定(5)。因蒽酮比色法测定羟乙基 淀粉注射液含量的影响因素较多,经试验觉 得文献(5)的试验条件还可进一步完善,故对 其实验条件重新作了探索, 并将方法作了适 当改进,现报告如下。

一、药品试剂与仪器

药品: 羟乙基淀粉, 四川乐山制药厂 试剂: 蒽酮, 化学纯, 北京化工厂 硫酸,分析纯,北京化工厂

仪器: 岛津UV-240紫外分光光度计。 岛津UV-260紫外分光光度计。 日立EPU-ZA紫外分光光度 计。

二、实验条件选择

表 1

1. 吸收光谱图: 按测定方法 项 下 操 不同浓度测得的吸收度

作,用岛津UV-240紫外分光光度计从 400~700nm扫描, 其最大吸收波长为626± 1 nm, 见图1。

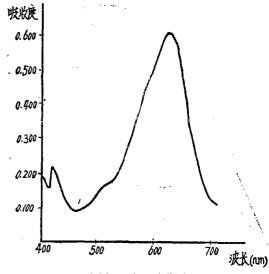


图 1 吸収光谱图

2. 浓度与吸收度的关系: 平不同量的 羟乙基淀粉溶液, 按测定方法项下操作, 在 626±1nm波长处测定吸收度,结果见表1。

	浓度 (µg/ml)							
गार ।धर ।दे∺ #	3.75	5.00	6.25	7.50	8.75	10.00		
吸 收 度#	0.231	0.305	0.388	0.453	0.531	0.608		

* 所列数据均为四次测定结果的平均值

对表 1 数据进行一元线性回归,得回归 方程:

A = 0.00541 + 0.06018 C。相 关 系 数 r = 0.9997.

可见羟乙基淀粉水溶液与蒽酮试剂呈色

后,浓度在3.75~10.00mg/ml范围内,与吸 收度定良好的线性关系。

3. 试剂的加入量: 按测定方法项下操 作,加入不同量试剂进行试验,结果如表2。

表 2	、剂	的	加	入	量	对	测	定	结	果	的	影	响
-----	----	---	---	---	---	---	---	---	---	---	---	---	---

5-4: . 4	号	样 品	水	试 剂	总 量	· · · · · · · · · · · · · · · · · · ·	光密度	
. 4	-5	(ml)	(m1)	(m1) (m1)	**************************************	儿苗皮		
J		0	2	6	8	淡黄色澄明液体	0	
1		0.8	3.2	4	8	白色混浊溶液	无法测定	
2		0.8	2.2	5	8	黄色有轻徽乳光的溶液	0.329	
3		0.8	1.2	6	8	黄色澄明溶液	0.615	
4		0.9	2.1	6	9	黄色有轻微乳光的溶液	0.432	
5		0.9	1.1	7	9	黄色澄明溶液	0.612	

从表 2 看出,管 2、管 4 因有 轻 微 乳光,光密度值偏低;管 3、管 5 光密度值较高且接近,但管 3 试剂用量少,故采用第 3 管。

4. 试剂的存放时间: 按测定方法项下操作,考察试剂存放时间对测定的影响,结果如表3、图2。

表 3

试剂存放时间对测定结果的影响

		存	放	时	间	
	立 即	2 小 时	4 小 时	6 小时	8 小 时	24 小 时
光密度		0.603				

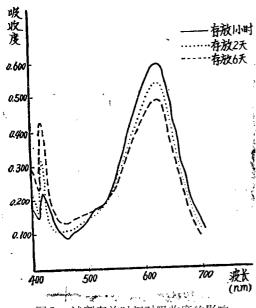


图 2 试剂存放时间对吸收度的影响

从表 3 看出, 试剂在 8 小时内 基 本 稳定, 故所配试剂应当天使用, 最好临用时配制。

从图 2 可看出,随看试剂存放时间的延长,主峰(626nm)逐渐降低,而侧峰(424nm)逐渐升高。

5. 冷却条件:按测定方法项下操作,考 察不同冷却条件对测定的影响,结果如表 4。

表 4 冷却条件对测定结果的影响


The state of the s	室	温	自	来	水	冰	洛
光密度	0.			•61	_	0.6	617

从表 4 可看出, 自来水与冰浴 冷 却 较

好。考虑到二者相差甚微,而自来水冷却简 单易行,故采用自来水冷却。

6. 反应时间:按测定方法项下操作, 考察反应不同时间对测定的影响,结果反应 3分钟,其光密度值最高,故认为在沸水浴 中反应3分钟为最好。

以〇管为空白,将反应1分钟、3分钟、9分钟、15分钟管从400~700nm扫描。结果如图3。

从图3可见, 应3分钟管,主峰(626nm)最高。随看反应时间的增长,主峰越来越低,而侧峰(510nm、424nm)越来越高。

7. 色泽稳定性: 按测定方法 项 下 操作, 考察呈色液的稳定性, 结果如表 5。

表 5	呈	色液	的 =	稳定	性		
	立 即	1 小 时	2 小时	3 小 时	4 小 时	6 小 时	8 小 时
光密度	0.607	0.601	0.596	0.590	0.585	0.574	0.563

从表 5 可看出,呈色液的光密度,每小时 约降低0.005,呈色液在 3 小时内基本稳定。

三、方法与结果

1. 测定方法

羟乙基淀粉的精制:

取羟乙基淀粉,加蒸溜水加热使溶解,用湿润的滤纸趁热过滤,放冷使成 饱 和 溶液。取此饱和溶液缓缓加入无水乙醇中,边加边搅拌,即产生大量羟乙基淀粉沉淀。冰箱放置过夜,倾出上清液,沉淀置乳钵中,加入无水乙醇研磨使成细小颗粒, 4 号玻璃垂熔漏斗抽滤,用无水乙醇洗涤 3 次。如此精制两次。

羟乙基淀粉溶液的制备:

精密称取经105℃干燥至恒重的精 制 品约25mg,置250ml容量瓶中,用蒸溜 水 溶解并稀释至刻度,使成0.1mg/ml溶液。

蒽酮试剂的配制:

称取蒽酮0.4g,溶于10ml水与190ml硫酸的混合液中,振摇使溶,放冷备用。

测定方法:

取上述羟乙基淀粉溶液0.8ml,置20ml 具塞玻璃试管中,用蒸溜水加至2ml,摇 匀,加入蒽酮试剂6ml,立即密塞摇匀, 置沸水浴中准确煮沸3分钟,取出,放入自 来水中冷却,并同时作空白试验。将空白与 样品分置1Cm吸收池中,在626±1nm 波 长处测定吸收度。

2. 吸收系数 $(E_{1 \text{ cm}}^{1 \%})$ 的测定 $(^{6\cdot7})$ 取羟乙基淀粉溶液 0.4 ml 和 0.8 ml,按 测定方法项下操作,分别用三台不同型号的 紫外分光光度计,在 $626\pm1 \text{ nm}$ 波长处测定 吸收度,计算百分吸收系数 $(E_{1 \text{ cm}}^{1 \%})$ 结果 见表 6 。

表 6	不	同	仪	器	测	得	的	吸	收	系	数 (E 1 %)
-----	---	---	---	---	---	---	---	---	---	---	-----------

101	(A) BE 书(J	号		5.0 μg	/m1		10.0g µg/m1				
仪	器	型	75	1	2	3	4	1	2	3	4
	岛 津U	JV24	0	604.0	612.0	604.0	622.0	598.0	606.0	606.0	620.0
	岛 津U	J V2 6	0	594.0	608.0	594 • 0	612.0	5 9 3 • 0	603.0	599.0	618.0
J	日立ÈI	PU—21	A.	600•0	610.0	600•0	616.0	600.0	610.0	600.0	620.0
Σ	F 均	匀 值	Ĺ		60 6.21 ,	示 准 差	8.6726,	变异系	系数(%)	1.43.	

经统计分析,确定羟乙淀粉水溶液与蒽酮试剂呈色后的 $\mathrm{E}_{1\,\mathrm{cm}}^{1\,\%}$ 626 nm 为606

3. 回收率试验

表7	回收率	试 验	结果•	
试 验 编 号	投入量µg/m1	测得量µg/m1	回 收 率 (%)	平均值(%)
1	3.75	3.80	101.33	
2	5.00	5.03	100.60	
3	6.25	6.40	102.40	100.75
4	7•50	7.48	99.73	
5	8.75	8.76	100.11	
6	10.00	10.03	100.30	
		 	A PROPERTY OF THE PERSON OF TH	

取不同浓度的羟乙基淀粉溶液,照测定方法项下操作,按公式 $E_{1cm}^{1\%}$ 626nm = 606 计算,结果见表 7。

*: 所列数据为 4 次试验的平均值。 SD=0.9730, CV=0.97%。

4. 样品测定

精密取样品适量,用蒸溜水稀 释 使 成 0.1 mg/ml的溶液,照测定方法项下操作,在 $626 \pm 1 \text{ nm}$ 波长处测定吸收度,按 $E_{1\text{cm}}^{1\%} = 606$ 计算含量。同时按文献 $^{(1)}$ 及 文 献 $^{(8)}$ 进行重量法及旋光法测定,结果见表 8:

表 8	样品	测 定	生 果	
生产厂	批号	重量法 (%)	旋光法(%)	本 法(%)
A *	85202022	102.97	97.83	97.14
В	840327	98.57	98.02	97.76
В	660131	100.57	100.26	99.25

* 为塑料袋装注射液。

四、讨 论

- 1.本法的原理是糖与硫酸先脱水生成 羟甲基呋喃醛,然后再与蒽酮缩合成蓝色化 合物,其呈色强度与溶液中糖的浓度成正 比,故可用于糖类的含量测定。因蒽酮试剂 及蒽酮与糖缩合生成的化合物在硫酸中不甚 稳定(参见图2、图4),故蒽酮试剂应临 用时配制,而且应严格控制测定条件,以免 影响结果的准确性。
- 2. 本法所选择的实验条件与上海市药品标准(80年)是不同的,主要表现在:1)试剂的加入量:上海药品标准(80年)方法与表 2的第 4 管相同,溶液有轻微乳光,虽样品加入量大,而光密度却只有0.432;本法采用第 3 号管,溶液澄明,虽样品加入量少,而光密度却为0.615。说明本法与上海法的结果是有差别的,其原因在于上海法加入水量较大。2)测定波长:上海法为620nm,本法为626nm。3)反应时间:上海为5分钟,本法为3分钟。4)冷却条件:上海法未指明怎样冷却,本法为冷水,从表 4 可见,自然冷却与冷水冷却,结果是不同的。
 - 3. 在样品测定结果的表8中,批号

85202022为塑料袋装,其重量法测定结果比本法测定结果偏高约5%,而本法与旋光法 (a) 测定结果却是一致的。作者认为,重量法测定结果偏高是塑料袋填充物溶出所致,这正是重量法专属性差的表现,确认本法与旋光法较好。

4. 上海市药品标准 (80) 要用羟乙基淀粉对照品,因我国目前尚无羟乙基淀粉标准品 (或对照品),即使羟乙基淀粉原料一般单位也没有,故上海法不便于推广应用。作者用羟乙基淀粉原料经精制后,测出吸收系数 (E 1 %),省去羟乙基淀粉对照品,一般单位都可依法测定。

参改文献

- 1. 天津市药品标准 (1980) /
- 2. 辽卫药字 (1980) 53号
- 3. 1nd Eng Chem Anal Ed 18, 499, 1946
- 4. 北京大学生物系生物化学教研室编: 生物化 学实验指导人民教育出版社, 1979年。
- 5. 上海市药品标准 (1980)
- 6. 吕孝敢等: 药物分析杂志, 3 (1):42, 1983
- 7. 钱树德等: 同上, 4 (3):178, 1984
- 8. 刘志邦: 同上, 7 (4):247, 1987