Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

HU Yong-sheng, XIAO Ying, DI Peng, ZHANG Lei, CHEN Wan-sheng. Advances of metabolic engineering in lignin biosynthesis[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(4): 256-259,271.
Citation: HU Yong-sheng, XIAO Ying, DI Peng, ZHANG Lei, CHEN Wan-sheng. Advances of metabolic engineering in lignin biosynthesis[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(4): 256-259,271.

Advances of metabolic engineering in lignin biosynthesis

  • Received Date: 2010-06-07
  • Rev Recd Date: 2010-12-14
  • Objective To introduce advances of metabolic engineering in lignin biosynthesis. Methods The structure of lignin, biosynthesis, systems biology and new metabolic engineering strategies were reviewed. Results & Conclusions Lignin was a phenolic polymer, which was usually located in the secondary walls of plant cells. Secondary metabolic pathways of lignin monomers had been stated, and the types and proportions of lignin monomer could be regulated by metabolic engineering.
  • [1] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annu Rev Plant Biol, 2003, 54: 519.
    [2] Ralph J, Lundquist K, Brunow G, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews, 2004, 3(1): 29.
    [3] Guo D, Chen F, Inoue K, et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. The Plant Cell Online, 2001, 13(1): 73.
    [4] Bayindir U, Alfermann AW, Fuss E. Hinokinin biosynthesis in Linum corymbulosum Reichenb[J]. Plant J, 2008, 55(5): 810.
    [5] Vanholme R, Morreel K, Ralph J, et al. Lignin engineering[J]. Curr Opin Plant Biol, 2008, 11(3): 278.
    [6] Ralph J, Akiyama T, Kim H, et al. Effects of coumarate 3-hydroxylase down-regulation on lignin structure[J]. J Biol Chem, 2006, 281(13): 8843.
    [7] Wagner A, Ralph J, Akiyama T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase in Pinus radiata[J]. Proceedings of the National Academy of Sciences, 2007, 104(28): 11856.
    [8] Baucher M, Halpin C, Petit-Conil M, et al. Lignin: genetic engineering and impact on pulping[J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38(4): 305.
    [9] Butland SL, Chow ML, Ellis BE. A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures[J]. Plant Mol Biol, 1998, 37(1): 15.
    [10] Kumar A, Ellis BE. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution[J]. Plant Physiol, 2001, 127(1): 230.
    [11] Lee BK, Park MR, Srinivas B, et al. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa[J]. Mol Cells, 2003, 16(1): 34.
    [12] Ehlting J, Shin JJ, Douglas CJ. Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains[J]. Plant J, 2001, 27(5): 455.
    [13] Hu WJ, Harding SA, Lung J, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J]. Nat Biotechnol, 1999, 17(8): 808.
    [14] Schoch G, Goepfert S, Morant M, et al. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway[J]. J Biol Chem, 2001, 276(39): 36566.
    [15] Anterola A, Lewis N. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity[J]. Phytochemistry, 2002, 61(3): 221.
    [16] Chen F, Yasuda S, Fukushima K. Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC[J]. Planta, 1999, 207(4): 597.
    [17] Ruegger M, Meyer K, Cusumano J, et al. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis[J]. Plant Physiology, 1999, 119(1): 101.
    [18] Dauwe R, Morreel K, Goeminne G, et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration[J]. Plant Journal, 2007, 52(2): 263.
    [19] Wadenback J, von Arnold S, Egertsdotter U, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR) [J]. Transgenic Res, 2008, 17(3): 379.
    [20] Abdulrazzak N, Pollet B, Ehlting J, et al. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth[J]. Plant Physiol, 2006, 140(1): 30.
    [21] Sibout R, Eudes A, Mouille G, et al. Cinnamyl alcohol dehydrogenase-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis[J]. The Plant Cell Online, 2005, 17(7): 2059.
    [22] Leple J, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. The Plant Cell Online, 2007, 19(11): 3669.
    [23] Leple JC, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. Plant Cell, 2007, 19(11): 3669.
    [24] Rohde A, Morreel K, Ralph J, et al. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism[J]. Plant Cell, 2004, 16(10): 2749.
    [25] Halpin C, Boerjan W. Stacking transgenes in forest trees[J]. Trends Plant Sci, 2003, 8(8): 363.
    [26] Koutaniemi S, Warinowski T, K rk nen A, et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR[J]. Plant Molecular Biology, 2007, 65(3): 311.
    [27] Sablowski R, Baulcombe D, Bevan M. Expression of a flower-specific Myb protein in leaf cells using a viral vector causes ectopic activation of a target promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15): 6901.
    [28] Sablowski R, Moyano E, Culianez-Macia F, et al. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes[J]. The EMBO Journal, 1994, 13(1): 128.
    [29] Tamagnone L, Merida A, Parr A, et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco[J]. The Plant Cell Online, 1998, 10(2): 135.
    [30] Borevitz JO, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. Plant Cell, 2000, 12(12): 2383.
    [31] Kawaoka, A, Kaothien P, Yoshida K, et al.Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis[J]. Plant J, 2000. 22(4): 289.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2277) PDF downloads(1009) Cited by()

Related
Proportional views

Advances of metabolic engineering in lignin biosynthesis

Abstract: Objective To introduce advances of metabolic engineering in lignin biosynthesis. Methods The structure of lignin, biosynthesis, systems biology and new metabolic engineering strategies were reviewed. Results & Conclusions Lignin was a phenolic polymer, which was usually located in the secondary walls of plant cells. Secondary metabolic pathways of lignin monomers had been stated, and the types and proportions of lignin monomer could be regulated by metabolic engineering.

HU Yong-sheng, XIAO Ying, DI Peng, ZHANG Lei, CHEN Wan-sheng. Advances of metabolic engineering in lignin biosynthesis[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(4): 256-259,271.
Citation: HU Yong-sheng, XIAO Ying, DI Peng, ZHANG Lei, CHEN Wan-sheng. Advances of metabolic engineering in lignin biosynthesis[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(4): 256-259,271.
Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return