Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Citation: HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002

Application of Caenorhabditis elegans in anti-infective research

doi: 10.3969/j.issn.1006-0111.2014.01.002
  • Received Date: 2013-07-04
  • Rev Recd Date: 2013-11-17
  • Objective To update the application of Caenorhabditis elegans as a model host of infection in anti-infection research field, and provide references for the further application of C. elegans in the research field. Methods The related literatures at home and abroad in recent years were analyzed, integrated and concluded. Results C. elegans had been widely used to study pathogenesis of microorganisms and to screen anti-infective agents, since the nemades had short life cycle and cost low. Conclusion C. elegans would be promising to be further more widely used to study pathogenesis and anti-infective agents.
  • [1] Millet A,Ewbank JJ. Immunity in Caenorhabditis elegans[J]. Curr Opin Immunol, 2004, 16(1):4-9.
    [2] Ferrandon D, Imler JL, Hetru C, et al. The drosophila systemic immune response:sensing and signalling during bacterial and fungal infections[J]. Nat Rev Immunol, 2007, 7(11):862-874.
    [3] Trede NS, Langenau DM, Traver D, et al. The use of zebra fish to understand immunity[J]. Immunity, 2004, 20(4):367-379.
    [4] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94.
    [5] Byerly L,Cassada R,Russell R. The life cycle of the nematode Caenorhabditis elegans:I. Wild-type growth and reproduction[J]. Devel Biol, 1976, 51(1):23-33.
    [6] Cassada RC,Russell RL. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans[J]. Devel Biol, 1975, 46(2):326-342.
    [7] Albert PS,Brown SJ,Riddle DL. Sensory control of dauer larva formation in Caenorhabditis elegans[J]. J Compar Neur, 1981, 198(3):435-451.
    [8] Sifri CD,Begun J,Ausubel FM. The worm has turned-microbial virulence modeled in Caenorhabditis elegans[J]. Trends Microbiol, 2005, 13(3):119-127.
    [9] Lindsay JA. Genomic variation and evolution of Staphylococcus aureus[J]. Intern J Med Microbiol, 2010, 300(2):98-103.
    [10] Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors[J]. Proc Natl Acad Sci, 2001, 98(19):10892-10897.
    [11] Irazoqui JE, Troemel ER, Feinbaum RL, et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus[J]. PLo S Pathogens, 2010, 6(7):1-24.
    [12] Sifri CD, Begun J, Ausubel FM, et al. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis[J]. Infect Immun, 2003, 71(4):2208-2217.
    [13] Ogawa T, Sato M, Yonekawa S, et al. Infective endocarditis caused by enterococcus faecalis treated with continuous infusion of ampicillin without adjunctive aminoglycosides[J]. Intern Med, 2012, 52(10):1131-1135.
    [14] Maadani A, Fox KA, Mylonakis E, et al. Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host[J]. Infect Immun, 2007, 75(5):2634-2637.
    [15] Sifri CD, Mylonakis E, Singh KV, et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice[J]. Infect Immun, 2002, 70(10):5647-5650.
    [16] Chávez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans[J]. Genetics, 2007, 176(3):1567-1577.
    [17] van der Hoeven R, McCallum KC, Cruz M R, et al. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans[J]. PLoS Pathogens, 2011, 7(12):1-14.
    [18] Mahajan-Miklos S, Tan MW, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans.Pathogene Model[J]. Cell, 1999, 96(1):47-56.
    [19] Tan MW,Mahajan-Miklos S,Ausubel F M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis[J]. Proc Natl Acad Sci, 1999, 96(2):715-720.
    [20] Kabir MA,Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era:an overview[J]. Expert Rev Anti-infect Ther, 2009, 7(1):121-134.
    [21] Breger J, Fuchs B B, Aperis G, et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay[J]. PLoS Pathogens, 2007, 3(2):0168-0178.
    [22] Mayer FL,Wilson D,Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128.
    [23] Pukkila-Worley R,Ausubel F M,Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses[J]. PLoS Pathogens, 2011, 7(6):1-13.
    [24] Pukkila-Worley R, Peleg AY, Tampakakis E, et al. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model[J]. Eukary cell, 2009, 8(11):1750-1758.
    [25] Pukkila-Worley R,Mylonakis E. From the outside in and the inside out:antifungal immune responses in Caenorhabditis elegans[J]. Virulence, 2010, 1(3):111-112.
    [26] Gantner BN,Simmons RM,Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments[J]. EMBO J, 2005, 24(6):1277-1286.
    [27] Netea MG, Brown GD, Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system[J]. Nat Rev Microbiol, 2008, 6(1):67-78.
    [28] Jouault T, Sarazin A, Martinez-Esparza M, et al. Host responses to a versatile commensal:PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans[J]. Cellular Microbiol, 2009, 11(7):1007-1015.
    [29] Peleg AY, Tampakakis E, Fuchs BB, et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans[J]. Proc Natl Acad Sci, 2008, 105(38):14585-14590.
    [30] Tampakakis E,Peleg AY,Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium[J]. Eukary Cell, 2009, 8(5):732-737.
    [31] Mylonakis E, Ausubel FM, Perfect JR, et al. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis[J].Proc Natl Acad Sci, 2002, 99(24):15675-15680.
    [32] van den Berg MC, Woerlee JZ, Ma H, et al. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans[J]. Genetics, 2006, 173(2):677-683.
    [33] Tang RJ, Breger J, Idnurm A, et al. Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach[J]. Infect Immun, 2005, 73(12):8219-6225.
    [34] Powell JR,Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens[J].Meth Molecul Biol, 2008, 415:403-427.
    [35] Moy T I, Ball A R, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model[J]. Proc Natl Acad Sci, 2006, 103(27):10414-10419.
    [36] Moy TI, Conery AL, Larkins-Ford J, et al. High-throughput screen for novel antimicrobials using a whole animal infection model[J]. ACS Chem Biol, 2009, 4(7):527-533.
    [37] Zhou YM, Shao L, Li JA, et al. An efficient and novel screening model for assessing the bioactivity of extracts against multidrug-resistant Pseudomonas aeruginosa using Caenorhabditis elegans[J]. Biosci Biotechnol Biochem, 2011, 75(9):1746-1751.
    [38] Okoli I, Coleman J J, Tempakakis E, et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay[J]. PloS One, 2009, 4(9):1-8.
    [39] Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans[J]. ACS Chem Biol, 2010, 5(3):321-332.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2984) PDF downloads(187) Cited by()

Related
Proportional views

Application of Caenorhabditis elegans in anti-infective research

doi: 10.3969/j.issn.1006-0111.2014.01.002

Abstract: Objective To update the application of Caenorhabditis elegans as a model host of infection in anti-infection research field, and provide references for the further application of C. elegans in the research field. Methods The related literatures at home and abroad in recent years were analyzed, integrated and concluded. Results C. elegans had been widely used to study pathogenesis of microorganisms and to screen anti-infective agents, since the nemades had short life cycle and cost low. Conclusion C. elegans would be promising to be further more widely used to study pathogenesis and anti-infective agents.

HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Citation: HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return