Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 41 Issue 1
Jan.  2023
Turn off MathJax
Article Contents

ZHOU Luozhu, SHENG Chunquan. Design, synthesis and degradation activity of BRD4-targeting ATTECs[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(1): 18-25. doi: 10.12206/j.issn.2097-2024.202206050
Citation: ZHOU Luozhu, SHENG Chunquan. Design, synthesis and degradation activity of BRD4-targeting ATTECs[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(1): 18-25. doi: 10.12206/j.issn.2097-2024.202206050

Design, synthesis and degradation activity of BRD4-targeting ATTECs

doi: 10.12206/j.issn.2097-2024.202206050
  • Received Date: 2022-06-13
  • Rev Recd Date: 2022-10-10
  • Available Online: 2023-07-14
  • Publish Date: 2023-01-25
  •   Objective   To design and synthesize autophagic degraders targeting BRD4 based on autophagosome tethering compound (ATTEC) strategy and test their BRD4 degradation activity.   Methods   BRD4-targeting ATTECs were constructed by conjugating ispinesib that used as a LC3 ligand and JQ1 through a variety of alkane linkers. The final compounds were confirmed by 1H NMR, 13C NMR and ESI-MS, and their degradation activity in different cell lines were tested by Western Blot.   Results   Five BRD4-ATTEC molecules were successfully synthesized for the first time. Compound 4 showed moderate BRD4 degradation activity in different cell lines.   Conclusion   The novel BRD4 autophagic degraders were discovered, which expanded the applicability of targeted autophagic degradation via ATTEC.
  • [1] SAKAMOTO K M, KIM K B, KUMAGAI A, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation[J]. Proc Natl Acad Sci USA,2001,98(15):8554-8559. doi:  10.1073/pnas.141230798
    [2] LU K F, DEN BRAVE F, JENTSCH S. Pathway choice between proteasomal and autophagic degradation[J]. Autophagy,2017,13(10):1799-1800. doi:  10.1080/15548627.2017.1358851
    [3] MIZUSHIMA N, LEVINE B, CUERVO A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature,2008,451(7182):1069-1075. doi:  10.1038/nature06639
    [4] TAKAHASHI D, MORIYAMA J, NAKAMURA T, et al. AUTACs: cargo-specific degraders using selective autophagy[J]. Mol Cell,2019,76(5):797-810.e10. doi:  10.1016/j.molcel.2019.09.009
    [5] NAKAGAWA I, AMANO A, MIZUSHIMA N, et al. Autophagy defends cells against invading group A Streptococcus[J]. Science,2004,306(5698):1037-1040. doi:  10.1126/science.1103966
    [6] LI Z Y, WANG C, WANG Z Y, et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds[J]. Nature,2019,575(7781):203-209. doi:  10.1038/s41586-019-1722-1
    [7] GHOSHAL A, YUGANDHAR D, SRIVASTAVA A K. BET inhibitors in cancer therapeutics: a patent review[J]. Expert Opin Ther Pat,2016,26(4):505-522. doi:  10.1517/13543776.2016.1159299
    [8] LU J, QIAN Y M, ALTIERI M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4[J]. Chem Biol,2015,22(6):755-763. doi:  10.1016/j.chembiol.2015.05.009
    [9] ZENGERLE M, CHAN K H, CIULLI A. Selective small molecule induced degradation of the BET bromodomain protein BRD4[J]. ACS Chem Biol,2015,10(8):1770-1777. doi:  10.1021/acschembio.5b00216
    [10] FILIPPAKOPOULOS P, QI J, PICAUD S, et al. Selective inhibition of BET bromodomains[J]. Nature,2010,468(7327):1067-1073. doi:  10.1038/nature09504
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1489) PDF downloads(23) Cited by()

Related
Proportional views

Design, synthesis and degradation activity of BRD4-targeting ATTECs

doi: 10.12206/j.issn.2097-2024.202206050

Abstract:   Objective   To design and synthesize autophagic degraders targeting BRD4 based on autophagosome tethering compound (ATTEC) strategy and test their BRD4 degradation activity.   Methods   BRD4-targeting ATTECs were constructed by conjugating ispinesib that used as a LC3 ligand and JQ1 through a variety of alkane linkers. The final compounds were confirmed by 1H NMR, 13C NMR and ESI-MS, and their degradation activity in different cell lines were tested by Western Blot.   Results   Five BRD4-ATTEC molecules were successfully synthesized for the first time. Compound 4 showed moderate BRD4 degradation activity in different cell lines.   Conclusion   The novel BRD4 autophagic degraders were discovered, which expanded the applicability of targeted autophagic degradation via ATTEC.

ZHOU Luozhu, SHENG Chunquan. Design, synthesis and degradation activity of BRD4-targeting ATTECs[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(1): 18-25. doi: 10.12206/j.issn.2097-2024.202206050
Citation: ZHOU Luozhu, SHENG Chunquan. Design, synthesis and degradation activity of BRD4-targeting ATTECs[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(1): 18-25. doi: 10.12206/j.issn.2097-2024.202206050
  • 蛋白降解靶向嵌合体(proteolysis targeting chimera, PROTAC)是近年来最受期待的蛋白降解技术[1]。PROTAC是一种异双功能分子,一端与靶蛋白结合,另一端结合E3连接酶形成靶蛋白-PROTAC-E3三元复合物,E3连接酶诱导靶蛋白泛素化,随后被蛋白酶体识别并降解。PROTAC相较传统药物具有诸多优势,如使难成药靶点实现可成药性、大幅增加可用靶点数量、克服耐药性、提高选择性和活性、降低毒副作用等。但是,PROTAC依赖E3连接酶和蛋白酶体,也存在一些固有缺陷,如主要针对细胞质中可溶性蛋白进行降解,不能降解蛋白聚集物和大的蛋白质,对非蛋白物质的降解无能为力[2]

    自噬-溶酶体途径(ALP)是广泛存在于真核细胞中的蛋白降解系统,它是指在自噬关键蛋白LC3参与下,细胞内膜结构形成自噬小体并将底物包裹,随后转运至溶酶体实现底物降解的过程[3]。该机制涉及的底物范围十分广泛,包括蛋白质聚集体、衰老或受损的细胞器、入侵的病原微生物等。ALP与泛素-蛋白酶体途径互为补充,在细胞中发挥重要的生理功能[4-5]

    2019年,复旦大学鲁伯埙团队基于自噬-溶酶体途径首次提出自噬小体绑定化合物(ATTEC)概念。ATTEC是一种双功能分子,同时结合LC3与靶蛋白,将靶蛋白包裹进自噬小体,并在溶酶体中实现降解。基于这一思想,研究人员将小分子库固定在芯片上,筛选以“分子胶”方式将突变型亨廷顿蛋白(mHTT)和LC3蛋白“黏合”的分子,成功获得4个小分子化合物(10O5、ispinesib、AN1-2, 图1)。这些化合物能有效降解mHTT蛋白,并减弱亨廷顿病相关表型[6]。ATTEC分子通过直接连接自噬蛋白LC3,绕过泛素化过程,是一种利用自噬降解靶标最为直接的策略,对于降解不同类型的靶标具有很大的潜力。但是,ATTEC技术尚处于概念验证阶段,急需拓展靶标应用范围,推动技术的不断成熟。

    BRD4是BET溴结构域蛋白家族中最重要的成员之一,在人体中广泛分布,对细胞正常生长及细胞周期的调控具有重要意义,与肿瘤发生密切相关,是肿瘤治疗的热门靶点[7],基于PROTAC的BRD4降解剂相继报道[8-9]。BRD4已成为靶向蛋白降解研究的经典体系,为了验证ATTEC降解策略的普适性和可行性,我们以BRD4靶点为研究对象,开展BRD4-ATTEC分子设计、合成和蛋白降解活性评价研究。

    • BRD4-ATTEC分子由三部分组成:BRD4抑制剂、连接子Linker和LC3配体。我们选择经典BRD4抑制剂JQ1作为靶蛋白配体,JQ1与BRD4共晶结构如图2A所示。JQ1的酯基部分暴露于溶剂中,适合作为Linker连接位点,不影响BRD4蛋白结合活性[10];Ispinesib作为LC3配体,由于鲁伯埙团队在进行高通量筛选时,化合物ispinesib的氨基端连接于分子芯片,故选择氨基端作为Linker连接另一位点,不会影响其与LC3蛋白的结合;随后,使用不同长度的烷烃链将两个配体相连设计得到相应目标化合物(图2BC)。目标化合物通过同时结合BRD4与LC3蛋白,将BRD4靶向至自噬小体中,从而被溶酶体吞噬完成降解。

    • 化学原料均为市售分析纯;免抗BRD4抗体(Abcam,ab128874);免抗GAPDH抗体(Abcam,ab181602);山羊抗免IgG H&L (Alexa Fluor® 680) (Abcam,ab175773);Bruker AVANCE600(Bruker Company, Germany)核磁共振仪,TMS作为内标,化学位移与偶合常数分别用ppm和Hz表示;Agilent 6538 UHD Accurate-Mass Q-TOF LC/MS高分辨质谱(HRMS)仪;上海申光WRR目视熔点仪;Bioteck Synergy2多功能酶标仪;Biorad ChemiDoc成像仪。

    • 化合物4的合成路线见图3

      S)-5-(2-(4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰氨基)戊酸甲酯(2)的制备:

      将JQ1-1(100 mg,0.25 mmol)溶解于二氯甲烷(DCM, 10 ml)中,加入5-氨基戊酸甲酯(1)(39 mg,0.30 mmol)、EDCI(73 mg,0.38 mmol)和HOBT(51 mg,0.38 mmol),室温下反应8 h。反应完后,加水(200 ml)稀释,并用DCM(50 ml×3)萃取,收集有机层,使用无水硫酸钠干燥,蒸干溶剂,硅胶柱色谱分离(DCM∶MeOH = 98∶2),得淡黄色油状液体(2)91 mg,产率71%;1H NMR (600 MHz, DMSO−d6) δ: 8.20 (t, J=5.7 Hz, 1 H), 7.48 (d, J=8.8 Hz, 2 H), 7.42 (d, J=8.6 Hz, 2 H), 4.50 (dd, J=8.4, 5.7 Hz, 1 H), 3.57 (s, 3 H), 3.28−3.22 (m, 1 H), 3.19−3.12 (m, 2 H), 3.10−3.03 (m, 1 H), 2.59 (s, 3 H), 2.41 (d, J=0.6 Hz, 3 H), 2.33 (t, J=7.4 Hz, 2 H), 1.62 (s, 3 H), 1.59−1.53 (m, 2 H), 1.48−1.42 (m, 2 H)。

      N-((R)-1-(3-苄基-7-氯-4-氧代-3, 4-二氢喹唑啉-2-基)-2-甲基丙基)-N-(3-(5-(2-((S)-4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰胺基)戊酰胺基丙基)-4-甲基苯甲酰胺(4)的制备:

      将化合物2(91 mg,0.18 mmol)溶于THF-MeOH-H2O(3∶2∶1)混合溶剂(6 ml),加入LiOH(17 mg,0.72 mmol),室温反应5 h后蒸干溶剂,使用1 mol/L稀盐酸调pH至6,过滤,收集固体并干燥,得白色固体49 mg(0.10 mmol);将所得白色固体(49 mg,0.10 mmol)溶于DCM(15 ml),加入EDCI(29 mg,0.15 mmol)、HOBT(20 mg,0.15 mmol)和ispinesib(0.10 mmol,52 mg),室温反应8 h后,加水(300 ml)稀释,用DCM(100 ml×3)萃取,收集有机层,使用无水硫酸钠干燥,蒸干溶剂,C18反相柱色谱分离(MeOH∶H2O=63∶37),得白色固体(4)59 mg(0.06 mmol),两步收率33%;1H NMR (600 MHz, DMSO−d6) δ: 8.24 (dd, J=8.6, 3.9 Hz, 1 H), 8.17 (t, J=5.6 Hz, 1 H), 7.81 (t, J=1.7 Hz, 1 H), 7.69−7.65 (m, 1 H), 7.50−7.47 (m, 2 H), 7.42 (d, J=8.3 Hz, 2 H), 7.40−7.35 (m, 3 H), 7.34−7.30 (m, 1 H), 7.29−7.20 (m, 6 H), 5.89 (d, J=16.0 Hz, 1 H), 5.55 (d, J=10.6 Hz, 1 H), 5.06 (d, J=16.3 Hz, 1 H), 4.51 (dd, J=8.1, 5.9 Hz, 1 H), 3.30−3.23 (m, 3 H), 3.20−3.15 (m, 1 H), 3.15−3.09 (m, 1 H), 3.05−2.97 (m, 1 H), 2.79−2.71 (m, 1 H), 2.61 (s, 3 H), 2.58−2.54 (m, 1 H), 2.49 (d, J=7.0 Hz, 1 H), 2.42 (s, 3 H), 2.34 (s, 3 H), 1.87−1.76 (m, 2 H), 1.64−1.60 (m, 3 H), 1.40−1.31 (m, 5 H), 0.91 (d, J=6.4 Hz, 3 H), 0.82−0.87 (m, 1 H), 0.49 (d, J=6.2 Hz, 3 H);13C NMR (151 MHz, DMSO−d6) δ: 172.44, 171.88, 169.76, 163.43, 161.57, 155.70, 155.59, 150.23, 147.64, 139.97, 139.11, 137.22, 137.16, 135.64, 134.25, 132.72, 131.14, 130.57, 130.27, 130.02, 129.34, 129.11, 128.91, 128.48, 127.88, 127.11, 126.89, 126.33, 119.55, 59.44, 54.35, 45.61, 42.90, 38.74, 38.11, 36.17, 35.36, 30.71, 29.33, 28.81, 23.06, 21.36, 19.95, 18.61, 14.48, 13.13, 11.75;HRMS(ESI) m/z calcd for C54H56Cl2N9O4S (M-H) 996.3559, found 996.3542;熔程:143.1~146.3 ℃。

      化合物56合成路线如图4所示。

      S)-6-(2-(4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰氨基)己酸乙酯(4a)的制备:

      将JQ1-1(100 mg,0.25 mmol)溶解于DCM(10 ml),加入化合物6-氨基己酸甲酯(3a,44 mg,0.30 mmol)、EDCI(73 mg,0.38 mmol)和HOBT(51 mg,0.38 mmol),室温反应8 h。反应完后,加水(200 ml)稀释,并用DCM(50 ml×3)萃取,收集有机层,使用无水硫酸钠干燥,蒸干溶剂,硅胶柱色谱分离(DCM∶MeOH=98∶2),得淡黄色油状液体(4a)80 mg,产率59%;1H NMR (600 MHz, DMSO - d6) δ∶8.17 (t, J=5.7 Hz, 1 H), 7.48 (d, J=8.8 Hz, 2 H), 7.42 (d, J=8.6 Hz, 2 H), 4.50 (dd, J=8.3, 5.8 Hz, 1 H), 4.04 (q, J=7.2 Hz, 2 H), 3.28−3.22 (m, 1 H), 3.20−3.10 (m, 2 H), 3.08−3.02 (m, 1 H), 2.59 (s, 3 H), 2.41 (s, 3 H), 2.26 (t, J=7.5 Hz, 2 H), 1.62 (s, 3 H), 1.56−1.50 (m, 2 H), 1.47−1.41 (m, 2 H), 1.34−1.27 (m, 2 H), 1.17 (t, J=7.1 Hz, 3 H)。

      S)-7-(2-(4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰氨基)庚酸乙酯(4b)的制备:

      中间体4b的合成步骤参照中间体4a合成,得淡黄色油状液体(4b)99 mg,产率76%;1H NMR (600 MHz, DMSO−d6) δ: 8.16 (t, J=5.7 Hz, 1 H), 7.48 (d, J=8.8 Hz, 2 H), 7.42 (d, J=8.4 Hz, 2 H), 4.50 (dd, J=8.4, 5.9 Hz, 1 H), 4.04 (q, J=7.1 Hz, 2 H), 3.28−3.22 (m, 1 H), 3.20−3.10 (m, 2 H), 3.08−3.02 (m, 1 H), 2.59 (s, 3 H), 2.41 (s, 3 H), 2.26 (t, J=7.4 Hz, 2 H), 1.62 (s, 3 H), 1.54−1.47 (m, 2 H), 1.46−1.39 (m, 2 H), 1.31−1.26 (m, 4 H), 1.16 (t, J=7.1 Hz, 3 H)。

      N-((R)-1-(3-苄基-7-氯-4-氧代-3, 4-二氢喹唑啉-2-基)-2-甲基丙基)-N-(3-(6-(2-((S)-4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰胺基)己酰胺基)丙基)-4-甲基苯甲酰胺(5)的制备:

      将化合物4a(80 mg,0.15 mmol)溶于THF-MeOH-H2O(3∶2∶1)混合溶剂(6 ml),加入LiOH(14 mg, 0.6 mmol),室温反应5 h后蒸干溶剂,使用1 mol/L稀盐酸调pH至6,过滤,收集固体并干燥,得白色固体61 mg(0.12 mmol);将所得白色固体(61 mg,0.12 mmol)溶于 DCM(15 ml)中,加入EDCI(35 mg,0.18 mmol)、HOBT(24 mg,0.18 mmol)和化合物ispinesib(0.12 mmol,62 mg),室温下反应8 h后,加水(300 ml)稀释,并用DCM(100 ml × 3)萃取,收集有机层,使用无水硫酸钠干燥,蒸干溶剂,C18反相柱色谱分离(MeOH∶H2O=63∶37),得白色固体(5)(64 mg,0.06 mmol),两步收率42%;1H NMR (600 MHz, DMSO−d6) δ: 8.23 (d, J=8.6 Hz, 1 H), 8.17 (t, J=5.6 Hz, 1 H), 7.79 (d, J=1.8 Hz, 1 H), 7.68−7.65 (m, 1 H), 7.49−7.45 (m, 2 H), 7.42 (d, J=7.9 Hz, 2 H), 7.39−7.34 (m, 3 H), 7.33−7.28 (m, 1 H), 7.28−7.19 (m, 6 H), 5.88 (d, J=16.1 Hz, 1 H), 5.54 (d, J=10.3 Hz, 1 H), 5.05 (d, J=16.5 Hz, 1 H), 4.51 (dd, J=8.2, 6.1 Hz, 1 H), 3.29−3.21 (m, 3 H), 3.21−3.15 (m, 1 H), 3.14−3.07 (m, 1 H), 3.07−3.00 (m, 1 H), 2.77−2.69 (m, 1 H), 2.60 (d, J=1.3 Hz, 3 H), 2.55−2.52 (m, 1 H), 2.50−2.47 (m, 1 H), 2.41 (s, 3 H), 2.33 (s, 3 H), 1.83−1.71 (m, 2 H), 1.62 (s, 3 H), 1.43−1.37 (m, 2 H), 1.36−1.27 (m, 3 H), 1.22−1.15 (m, 2 H), 0.90 (d, J=6.6 Hz, 3 H), 0.87−0.80 (m, 1 H), 0.48 (d, J=5.9 Hz, 3 H); 13C NMR (151 MHz, DMSO−d6) δ: 172.45, 171.96, 169.74, 163.43, 161.57, 155.70, 155.60, 150.24, 147.64, 139.96, 139.11, 137.22, 137.16, 135.67, 134.25, 132.71, 131.16, 130.55, 130.27, 130.03, 129.34, 129.11, 128.90, 128.48, 127.88, 127.13, 126.88, 126.33, 119.55, 59.44, 54.36, 45.62, 42.90, 38.89, 38.08, 36.18, 35.70, 30.69, 29.48, 28.81, 26.61, 25.35, 21.36, 19.95, 18.61, 14.49, 13.13, 11.74;HRMS(ESI) m/z calcd for C55H59Cl3N9O4S (M+Cl) 1046.3482, found 1046.3443;熔程:143.0~145.2 ℃。

      N-((R)-1-(3-苄基-7-氯-4-氧代-3, 4-二氢喹唑啉-2-基)-2-甲基丙基)-N-(3-(7-(2-((S)-4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰胺基)庚酰胺基)丙基)-4-甲基苯甲酰胺(6)的制备:

      化合物6的合成步骤参照化合物5合成,得白色固体(6)(71 mg,0.07 mmol),两步收率36%;1H NMR (600 MHz, DMSO−d6) δ: 8.23 (d, J=8.6 Hz, 1 H), 8.17 (t, J=5.6 Hz, 1 H), 7.79 (d, J=2.0 Hz, 1 H), 7.66 (dd, J=8.6, 2.0 Hz, 1 H), 7.50−7.46 (m, 2 H), 7.44−7.40 (m, 2 H), 7.40−7.34 (m, 3 H), 7.33−7.28 (m, 1 H), 7.27−7.19 (m, 6 H), 5.88 (d, J=16.1 Hz, 1 H), 5.54 (d, J=10.5 Hz, 1 H), 5.05 (d, J=16.3 Hz, 1 H), 4.51 (dd, J=8.3, 6.1 Hz, 1 H), 3.29−3.21 (m, 3 H), 3.21−3.17 (m, 1 H), 3.16−3.09 (m, 1 H), 3.08−3.01 (m, 1 H), 2.77−2.69 (m, 1 H), 2.59 (s, 3 H), 2.57−2.53 (m, 1 H), 2.50−2.46 (m, 1 H), 2.41 (s, 3 H), 2.33 (s, 3 H), 1.84−1.70 (m, 2 H), 1.61 (s, 3 H), 1.44−1.38 (m, 2 H), 1.36−1.28 (m, 3 H), 1.27−1.25 (m, 1 H), 1.23−1.21 (m, 1 H), 1.19−1.12 (m, 2 H), 0.89 (d, J=6.6 Hz, 3 H), 0.87−0.81 (m, 1 H), 0.47 (d, J=6.2 Hz, 3 H);13C NMR (151 MHz, DMSO−d6) δ: 172.45, 172.00, 169.74, 163.44, 161.56, 155.70, 155.60, 150.24, 147.64, 139.95, 139.09, 137.21, 137.16, 135.69, 134.25, 132.71, 131.15, 130.54, 130.26, 130.04, 129.33, 129.11, 128.90, 128.47, 127.88, 127.12, 126.87, 126.32, 119.55, 59.44, 54.37, 45.62, 42.90, 38.90, 38.11, 36.16, 35.67, 30.71, 29.61, 28.89, 28.81, 26.61, 25.53, 21.36, 19.95, 18.60, 14.48, 13.13, 11.74;HRMS(ESI) m/z calcd for C56H61Cl2N9O4SNa (M+Na)+ 1048.3836, found 1048.3892;熔程:142.0~144.7 ℃。

      化合物78合成路线如图5所示。

      R)-(9-((3-(N-(1-(3-苄基-7-氯-4-氧代 -3, 4-二氢喹唑啉 -2-基)-2-甲基丙基)-4-甲基苯甲酰胺基)丙基)氨基)-9-氧代壬基)氨基甲酸叔丁酯(6a)的制备:

      将ispinesib(100 mg,0.2 mmol)溶解于DCM(10 ml)中,加入化合物9-((叔丁氧基羰基)氨基)壬酸(5a)(66 mg,0.24 mmol),EDCI(58 mg,0.30 mmol)和HOBT(41 mg,0.30 mmol),室温下反应8 h。反应完后,加水(200 ml)稀释,并用DCM(50 ml×3)萃取,收集有机层,使用无水硫酸钠干燥,蒸干溶剂,硅胶柱色谱分离(DCM∶MeOH=98∶2),得淡黄色油状液体(6a)93 mg,产率60%;1H NMR (600 MHz, DMSO−d6) δ: 8.22 (d, J=8.4 Hz, 1 H), 7.77 (d, J=2.0 Hz, 1 H), 7.65 (dd, J=8.5, 2.1 Hz, 1 H), 7.38−7.31 (m, 3 H), 7.31−7.27 (m, 1 H), 7.26−7.19 (m, 6 H), 6.74 (t, J=5.5 Hz, 1 H), 5.88 (d, J=16.1 Hz, 1 H), 5.53 (d, J=10.5 Hz, 1 H), 5.05 (d, J=16.3 Hz, 1 H), 3.26−3.20 (m, 2 H), 2.87 (q, J=6.7 Hz, 2 H), 2.76−2.68 (m, 1 H), 2.55−2.51 (m, 1 H), 2.49−2.45 (m, 1 H), 2.33 (s, 3 H), 1.81−1.69 (m, 2 H), 1.36 (s, 9 H), 1.33−1.27 (m, 4 H), 1.23−1.15 (m, 7 H), 1.14−1.08 (m, 2 H), 0.89 (d, J=6.8 Hz, 3 H), 0.86−0.80 (m, 1 H), 0.47 (d, J=6.2 Hz, 3 H)。

      R)-(10-((3-(N-(1-(3-苄基-7-氯-4-氧代 -3, 4-二氢喹唑啉 -2-基)-2-甲基丙基)-4-甲基苯甲酰胺基)丙基)氨基)-9-氧代壬基)氨基甲酸叔丁酯(6b)的制备:

      中间体6b的合成步骤参照中间体6a合成,得淡黄色油状液体(6b)82 mg,产率52%;1H NMR (600 MHz, DMSO−d6) δ: 8.22 (d, J=8.6 Hz, 1 H), 7.78 (d, J=2.0 Hz, 1 H), 7.65 (dd, J=8.6, 2.0 Hz, 1 H), 7.38−7.28 (m, 4 H), 7.26−7.18 (m, 6 H), 6.75 (t, J=5.5 Hz, 1 H), 5.87 (d, J=16.7 Hz, 1 H), 5.53 (d, J=10.5 Hz, 1 H), 5.04 (d, J=16.7 Hz, 1 H), 3.25−3.19 (m, 2 H), 2.87 (q, J=6.4 Hz, 2 H), 2.75−2.68 (m, 1 H), 2.54−2.51 (m, 1 H), 2.49−2.46 (m, 1 H), 2.33 (s, 3 H), 1.81−1.68 (m, 2 H), 1.36 (s, 9 H), 1.34−1.09 (m, 15 H), 0.89 (d, J=6.8 Hz, 3 H), 0.86−0.80 (m, 1 H), 0.47 (d, J=6.2 Hz, 3 H)。

      N-((R)-1-(3-苄基-7-氯-4-氧代-3, 4-二氢喹唑啉-2-基)-2-甲基丙基)-N-(3-(9-(2-((S)-4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰胺基)壬酰胺基)丙基)-4-甲基苯甲酰胺(7)的制备:

      将化合物6a(93 mg,0.12 mmol)溶于DCM(3 ml)中,加入CF3COOH(1 ml),室温反应4 h后蒸干溶剂,得无色油状液体73 mg(0.11 mmol);将所得无色油状液体(73 mg,0.11 mmol)溶于DCM(15 ml)中,加入EDCI(31 mg,0.16 mmol)、HOBT(22 mg,0.16 mmol)和化合物JQ1-1(0.11 mmol,44 mg),室温下反应8 h,加水(300 ml)稀释,并用DCM(100 ml×3)萃取,收集有机层,使用无水硫酸钠干燥,蒸干溶剂,C18反相柱色谱分离(MeOH∶H2O=68∶32),得白色固体(7)(53 mg,0.05 mmol),两步收率46%;1H NMR (600 MHz, DMSO−d6) δ: 8.24 (d, J=8.6 Hz, 1 H), 8.19 (t, J=5.5 Hz, 1 H), 7.80 (d, J=1.8 Hz, 1 H), 7.67 (dd, J=8.6, 2.0 Hz, 1 H), 7.50−7.47 (m, 2 H), 7.46−7.42 (m, 2 H), 7.40−7.34 (m, 3 H), 7.34−7.29 (m, 1 H), 7.29−7.21 (m, 6 H), 5.89 (d, J=16.0 Hz, 1 H), 5.55 (d, J=10.6 Hz, 1 H), 5.06 (d, J=16.3 Hz, 1 H), 4.52 (dd, J=8.3, 6.1 Hz, 1 H), 3.30−3.22 (m, 3 H), 3.22−3.17 (m, 1 H), 3.16−3.05 (m, 2 H), 2.77−2.70 (m, 1 H), 2.61 (s, 3 H), 2.58−2.53 (m, 1 H), 2.51−2.47 (m, 1 H), 2.42 (s, 3 H), 2.34 (s, 3 H), 1.84−1.71 (m, 2 H), 1.63 (s, 3 H), 1.48−1.41 (m, 2 H), 1.35−1.25 (m, 7 H), 1.23−1.17 (m, 2 H), 1.17−1.11 (m, 2 H), 0.91 (d, J=6.8 Hz, 3 H), 0.88−0.82 (m, 1 H), 0.49 (d, J=6.2 Hz, 3 H);13C NMR (151 MHz, DMSO−d6) δ: 172.45, 172.02, 169.76, 163.41, 161.56, 155.70, 155.59, 150.23, 147.64, 139.94, 139.10, 137.20, 137.15, 135.68, 134.25, 132.71, 131.16, 130.56, 130.25, 130.03, 129.33, 129.11, 128.87, 128.46, 127.87, 127.12, 126.87, 126.33, 119.55, 59.44, 54.38, 45.63, 42.91, 38.91, 38.13, 36.17, 35.73, 30.69, 29.71, 29.23, 29.14, 28.81, 26.85, 25.57, 21.36, 19.96, 18.61, 14.48, 13.12, 11.74;HRMS(ESI) m/z calcd for C58H66Cl2N9O4S (M+H)+ 1054.433, found 1054.4367;熔程:134.7~139.1 ℃。

      N-((R)-1-(3-苄基-7-氯-4-氧代-3, 4-二氢喹唑啉-2-基)-2-甲基丙基)-N-(3-(10-(2-((S)-4-(4-氯苯基)-2, 3, 9-三甲基-6H-噻吩并[3, 2-f][1, 2, 4]三唑并[4, 3-a][1, 4]二氮杂卓-6-基)乙酰胺基)癸酰胺基)丙基)-4-甲基苯甲酰胺(8)的制备:

      化合物8的合成步骤参照化合物7合成,得白色固体47 mg,两步收率49%;1H NMR (600 MHz, DMSO−d6)δ: 8.24 (d, J=8.6 Hz, 1 H), 8.18 (t, J=5.6 Hz, 1 H), 7.80 (d, J=1.8 Hz, 1 H), 7.67 (dd, J=8.6, 2.0 Hz, 1 H), 7.50−7.47 (m, 2 H), 7.46−7.42 (m, 2 H), 7.40−7.34 (m, 3 H), 7.34−7.30 (m, 1 H), 7.29−7.21 (m, 6 H), 5.89 (d, J=16.0 Hz, 1 H), 5.55 (d, J=10.6 Hz, 1 H), 5.06 (d, J=16.5 Hz, 1 H), 4.52 (dd, J=8.3, 5.9 Hz, 1 H), 3.30−3.22 (m, 3 H), 3.21−3.16 (m, 1 H), 3.16−3.11 (m, 1 H), 3.11−3.04 (m, 1 H), 2.77−2.70 (m, 1 H), 2.61 (s, 3 H), 2.58−2.53 (m, 1 H), 2.51−2.47 (m, 1 H), 2.42 (s, 3 H), 2.34 (s, 3 H), 1.83−1.71 (m, 2 H), 1.63 (s, 3 H), 1.48−1.41 (m, 2 H), 1.35−1.25 (m, 8 H), 1.22−1.19 (m, 3 H), 1.16−1.09 (m, 2 H), 0.91 (d, J=6.8 Hz, 3 H), 0.89−0.82 (m, 1 H), 0.49 (d, J=6.2 Hz, 3 H);13C NMR (151 MHz, DMSO−d6) δ: 172.45, 172.02, 169.76, 163.40, 161.56, 155.71, 155.60, 150.23, 147.64, 139.93, 139.10, 137.19, 137.15, 135.69, 134.26, 132.72, 131.16, 130.56, 130.25, 130.04, 129.33, 129.11, 128.87, 128.45, 127.87, 127.12, 126.87, 126.34, 119.55, 59.45, 54.39, 45.63, 42.91, 38.93, 38.15, 36.17, 35.74, 30.69, 29.73, 29.40, 29.27, 29.22, 29.15, 28.81, 26.87, 25.57, 21.36, 19.95, 18.62, 14.48, 13.12, 11.74;HRMS(ESI) m/z calcd for C59H68Cl2N9O4S (M+H)+ 1068.4487, found 1068.4488;熔程:132.9~138.5 ℃。

    • 将细胞以4×105个/孔的密度接种于6孔板中,培养24 h;根据实验需要,选取相应浓度的PAGE凝胶快速制备试剂盒,取40 μg总蛋白及5 μl蛋白marker上样,恒压120 V电泳90 min;然后恒流300 mA 转膜180 min转至PVDF膜上;转膜结束后,根据marker剪下目的条带,配制无蛋白快速封闭液(5×)封闭30 min;用TBST清洗残留封闭液,用5% BSA稀释相应一抗,4 ℃摇床孵育过夜;用TBST 洗膜3次,每次10min;使用荧光兔二抗,室温孵育1 h; 用TBST 洗膜3次,每次5 min;最后在Biorad ChemiDoc成像仪下拍照。

    • 蛋白印迹法结果表明,Linker长度与化合物降解活性密切相关,Linker长度为4个碳原子长度时(化合物4),BRD4降解活性最强。化合物4在HCT116、MDA-MB-231、Hela和A549四种肿瘤细胞中均表现出下调BRD4蛋白水平的活性,而其他化合物在10 μmol/L与1 μmol/L浓度下对胞内BRD4蛋白水平均无明显影响(图6)。

    • 基于ATTEC策略,我们设计并成功合成5个BRD4-ATTEC分子,所有目标化合物均经过了核磁和质谱结构确证,纯度均高于95%。在蛋白降解活性测试中,我们发现化合物4在10 μmol/L浓度下对4种肿瘤细胞均显示出诱导BRD4蛋白降解活性,表现出广谱有效的特征,为后续BRD4自噬降解的设计和结构优化提供了有效的先导化合物。本研究验证了ATTEC策略能有效诱导BRD4蛋白降解,并获得BRD4自噬降解剂先导化合物,拓展了靶向自噬降解的适用范围,后续的结构优化研究尚在进展之中。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return