[1] GARBACZ K. Anticancer activity of lactic acid bacteria[J]. Semin Cancer Biol, 2022, 86:356-366. doi:  10.1016/j.semcancer.2021.12.013
[2] SILVA W M, SOUSA C S, OLIVEIRA L C, et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics[J]. Microb Biotechnol, 2019, 12(2):265-274. doi:  10.1111/1751-7915.13305
[3] WU J P, XIN Y P, KONG J, et al. Genetic tools for the development of recombinant lactic acid bacteria[J]. Microb Cell Fact, 2021, 20(1):118. doi:  10.1186/s12934-021-01607-1
[4] SAHA U B, SAROJ S D. Lactic acid bacteria: prominent player in the fight against human pathogens[J]. Expert Rev Anti Infect Ther, 2022, 20(11):1435-1453. doi:  10.1080/14787210.2022.2128765
[5] MAYS Z J, NAIR N U. Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics[J]. Curr Opin Biotechnol, 2018, 53:224-231. doi:  10.1016/j.copbio.2018.01.028
[6] KRISHNAN S, ALDEN N, LEE K. Pathways and functions of gut microbiota metabolism impacting host physiology[J]. Curr Opin Biotechnol, 2015, 36:137-145. doi:  10.1016/j.copbio.2015.08.015
[7] HU Y Y, ZHANG L, WEN R X, et al. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: a review[J]. Crit Rev Food Sci Nutr, 2022, 62(10):2741-2755. doi:  10.1080/10408398.2020.1858269
[8] WYSZYŃSKA A, KOBIERECKA P, BARDOWSKI J, et al. Lactic acid bacteria: 20 years exploring their potential as live vectors for mucosal vaccination[J]. Appl Microbiol Biotechnol, 2015, 99(7):2967-2977. doi:  10.1007/s00253-015-6498-0
[9] TAGUCHI S, OOI T, MIZUNO K, et al. Advances and needs for endotoxin-free production strains[J]. Appl Microbiol Biotechnol, 2015, 99(22):9349-9360. doi:  10.1007/s00253-015-6947-9
[10] HELANDER H F, FÄNDRIKS L. Surface area of the digestive tract–revisited[J]. Scand J Gastroenterol, 2014, 49(6):681-689. doi:  10.3109/00365521.2014.898326
[11] MORADI-KALBOLANDI S, MAJIDZADEH-A K, ABDOLVAHAB M H, et al. The role of mucosal immunity and recombinant probiotics in SARS-CoV2 vaccine development[J]. Probiotics Antimicrob Proteins, 2021, 13(5):1239-1253. doi:  10.1007/s12602-021-09773-9
[12] SONG A A, IN L L, LIM S, et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16(1):55. doi:  10.1186/s12934-017-0669-x
[13] WEGMANN U, O'CONNELL-MOTHERWAY M, ZOMER A, et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363[J]. J Bacteriol, 2007, 189(8):3256-3270. doi:  10.1128/JB.01768-06
[14] DIVYA J B, VARSHA K K, NAMPOOTHIRI K M, et al. Probiotic fermented foods for health benefits[J]. Eng Life Sci, 2012, 12(4):377-390. doi:  10.1002/elsc.201100179
[15] VESA T, POCHART P, MARTEAU P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract[J]. Aliment Pharmacol Ther, 2000, 14(6):823-828. doi:  10.1046/j.1365-2036.2000.00763.x
[16] KIMOTO H, NOMURA M, KOBAYASHI M, et al. Survival of lactococci during passage through mouse digestive tract[J]. Can J Microbiol, 2003, 49(11):707-711. doi:  10.1139/w03-092
[17] MORISHITA M, PEPPAS N A. Is the oral route possible for peptide and protein drug delivery?[J]. Drug Discov Today, 2006, 11(19-20):905-910. doi:  10.1016/j.drudis.2006.08.005
[18] SANDERS M E. Impact of probiotics on colonizing microbiota of the gut[J]. J Clin Gastroenterol, 2011, 45:S115-S119. doi:  10.1097/MCG.0b013e318227414a
[19] TAN L L, MAHOTRA M, CHAN S Y, et al. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery[J]. Carbohydr Polym, 2022, 286:119279. doi:  10.1016/j.carbpol.2022.119279
[20] DIVYA J B, NAMPOOTHIRI K M. Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods[J]. Bioresour Technol, 2015, 188:226-230. doi:  10.1016/j.biortech.2015.01.073
[21] OH S H, KIM S H, JEON J H, et al. Cytoplasmic expression of a model antigen with M Cell-Targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route[J]. Vaccine, 2021, 39(30):4072-4081. doi:  10.1016/j.vaccine.2021.06.010
[22] SÁNCHEZ C, MAYO B. General and specialized vectors derived from pBM02, a new rolling circle replicating plasmid of Lactococcus lactis[J]. Plasmid, 2004, 51(3):265-271. doi:  10.1016/j.plasmid.2003.12.005
[23] HERNANDEZ-VALDES J A, HUANG C X, KOK J, et al. Another breaker of the wall: the biological function of the Usp45 protein of Lactococcus lactis[J]. Appl Environ Microbiol, 2020, 86(16):e00903-e00920.
[24] LANDETE J M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application[J]. Crit Rev Biotechnol, 2017, 37(3):296-308. doi:  10.3109/07388551.2016.1144044
[25] FRELET-BARRAND A. Lactococcus lactis, an attractive cell factory for the expression of functional membrane proteins[J]. Biomolecules, 2022, 12(2):180. doi:  10.3390/biom12020180
[26] MU D D, MONTALBÏ¿½N-LÏ¿½PEZ M, MASUDA Y, et al. Zirex: a novel zinc-regulated expression system for Lactococcus lactis[J]. Appl Environ Microbiol, 2013, 79(14):4503-4508. doi:  10.1128/AEM.00866-13
[27] BENBOUZIANE B, RIBELLES P, AUBRY C, et al. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces[J]. J Biotechnol, 2013, 168(2):120-129. doi:  10.1016/j.jbiotec.2013.04.019
[28] ZHANG B, LI A D, ZUO F L, et al. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells[J]. Microb Cell Fact, 2016, 15(1):102. doi:  10.1186/s12934-016-0506-7
[29] ZENG Z, YU R, ZUO F L, et al. Recombinant Lactococcus lactis expressing bioactive exendin-4 to promote insulin secretion and beta-cell proliferation in vitro[J]. Appl Microbiol Biotechnol, 2017, 101(19):7177-7186. doi:  10.1007/s00253-017-8410-6
[30] SZATRAJ K, SZCZEPANKOWSKA A K, CHMIELEWSKA-JEZNACH M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts[J]. J Appl Microbiol, 2017, 123(2):325-339. doi:  10.1111/jam.13446
[31] TAGHINEZHAD-S S, KEYVANI H, BERMÚDEZ-HUMARÁN L G, et al. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis[J]. Cell Mol Life Sci, 2021, 78(4):1191-1206. doi:  10.1007/s00018-020-03652-2
[32] LEVIT R, CORTES-PEREZ N G, DE MORENO DE LEBLANC A, et al. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health[J]. Gut Microbes, 2022, 14(1):2110821. doi:  10.1080/19490976.2022.2110821