留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

代谢组学在白血病中的研究进展

宋志强 朱臻宇 刘悦 柴逸峰

宋志强, 朱臻宇, 刘悦, 柴逸峰. 代谢组学在白血病中的研究进展[J]. 药学实践与服务, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
引用本文: 宋志强, 朱臻宇, 刘悦, 柴逸峰. 代谢组学在白血病中的研究进展[J]. 药学实践与服务, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
SONG Zhiqiang, ZHU Zhenyu, LIU Yue, CHAI Yifeng. Research progress of metabolomics in leukemia[J]. Journal of Pharmaceutical Practice and Service, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
Citation: SONG Zhiqiang, ZHU Zhenyu, LIU Yue, CHAI Yifeng. Research progress of metabolomics in leukemia[J]. Journal of Pharmaceutical Practice and Service, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001

代谢组学在白血病中的研究进展

doi: 10.3969/j.issn.1006-0111.2019.05.001
基金项目: 国家自然科学基金(81703674)

Research progress of metabolomics in leukemia

  • 摘要: 代谢组学是对生物系统(细胞、组织、器官、生命体)中所有内源性小分子代谢物进行定性和定量分析的一门新学科,通过研究代谢物和代谢通路改变与生理病理变化之间的规律,揭示疾病的代谢本质。白血病是一种常见的血液系统恶性肿瘤,它的发生发展与代谢密切相关,代谢组学发现的内源性小分子代谢物已经广泛应用于白血病的发病机制、诊断和药效机制研究并取得了显著进展。综述近年来代谢组学在白血病发病机制、诊断和药效机制方面的研究进展,以期为进一步研究提供参考。
  • [1] 徐超,任立红.代谢组学在白血病中的应用[J].医学综述,2018,24(7):1294-1298.
    [2] AMITAY E L,KEINAN-BOKER L.Breastfeeding and childhood leukemia incidence:a meta-analysis and systematic review[J].JAMA Pediatr,2015,169(6):e151025.
    [3] ONCIU M.Acute lymphoblastic leukemia[J].Hematol Oncol Clin North Am,2009,23(4):655-674.
    [4] HANAHAN D,WEINBERG R A.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.
    [5] TAI E W,WARD K C,BONAVENTURE A,et al.Survival among children diagnosed with acute lymphoblastic leukemia in the United States,by race and age,2001 to 2009:Findings from the CONCORD-2 study[J].Cancer,2017,123(Suppl 24):5178-5189.
    [6] JEMAL A,SIEGEL R,XU J,et al.Cancer statistics,2010[J].CA Cancer J Clin,2010,60(5):277-300.
    [7] DIAMANTI P,COX C V,MOPPETT J P,et al.Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia[J].Blood,2013,121(8):1384-1393.
    [8] PELKONEN O,TERRON A,HERNANDEZ A F,et al.Chemical exposure and infant leukaemia:development of an adverse outcome pathway (AOP) for aetiology and risk assessment research[J].Arch Toxicol,2017,91(8):2763-2780.
    [9] MARCOTTE E L,THOMOPOULOS T P,INFANTE——RIVARD C,et al.Caesarean delivery and risk of childhood leukaemia:a pooled analysis from the Childhood Leukemia International Consortium (CLIC)[J].Lancet Haematol,2016,3(4):e176-e185.
    [10] ZHANG M Y,LIU Y,LIU M,et al.UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer's disease cell model induced by Aβ1-42[J].Metabolomics,2019,15(2):13.
    [11] ZHANG H,ZHAO Y H,XIA Z X,et al.Metabolic profiles revealed anti-ischemia-reperfusion injury of Yangxinshi tablet in Rats[J].J Ethnopharmacol,2018,214:124-133.
    [12] ARMITAGE E G,SOUTHAM A D.Monitoring cancer prognosis,diagnosis and treatment efficacy using metabolomics and lipidomics[J].Metabolomics,2016,12:146.
    [13] DUARTE I F,DIAZ S O,GIL A M.NMR metabolomics of human blood and urine in disease research[J].J Pharm Biomed Anal,2014,93:17-26.
    [14] 刘悦,赵亮,李燕,等.肝细胞性肝癌代谢组学研究进展[J].药学实践杂志,2013,31(2):81-85.
    [15] IBARRA-GONZÁLEZ I,CRUZ-BAUTISTA I,BELLO-CHAVOLLA O Y,et al.Optimization of kidney dysfunction prediction in diabetic kidney disease using targeted metabolomics[J].Acta Diabetol,2018,55(11):1151-1161.
    [16] LE Y C,SHEN X Y,KANG H Y,et al.Accelerated,untargeted metabolomics analysis of cutaneous T-cell lymphoma reveals metabolic shifts in plasma and tumor adjacent skins of xenograft mice[J].J Mass Spectrom,2018,53(8):739.
    [17] XU J,LI J S,ZHANG R P,et al.Development of a metabolic pathway-based pseudo-targeted metabolomics method using liquid chromatography coupled with mass spectrometry[J].Talanta,2019,192:160-168.
    [18] AMBERG A,RIEFKE B,SCHLOTTERBECK G,et al.NMR and MSmethods for metabolomics[J].Methods Mol Biol,2017,1641:229-258.
    [19] PAPADIMITROPOULOS M P,VASILOPOULOU C G,MAGA-NTEVE C,et al.Untargeted GC-MS metabolomics[J].Methods Mol Biol,2018,1738:133-147.
    [20] LIU W J,SONG Q Q,CAO Y,et al.From 1H NMR-based non-targeted to LC-MS-based targeted metabolomics strategy for in-depth chemome comparisons among four Cistanche species[J].J Pharm Biomed Anal,2019,162:16-27.
    [21] RAMAUTAR R,SOMSEN G W,DE JONG G J.CE-MS for metabolomics:Developments and applications in the period 2014-2016[J].Electrophoresis,2017,38(1):190-202.
    [22] YAN M,XU G W.Current and future perspectives of functional metabolomics in disease studies-A review[J].Anal Chim Acta,2018,1037:41-54.
    [23] LIU Y,LU S,ZHAO L,et al.Effects of glaucocalyxin A on human liver cancer cells as revealed by GC/MS- and LC/MS-based metabolic profiling[J].Anal Bioanal Chem,2018,410(14):3325-3335.
    [24] WU Q,ZHANG H,DING J R,et al.UPLC-QTOF MS——based serum metabolomic profiling analysis reveals the molecular perturbations underlying uremic pruritus[J].Biomed Res Int,2018,2018:4351674.
    [25] MAYER R L,SCHWARZMEIER J D,GERNER M C,et al.Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia[J].Mol Cell Proteomics,2018,17(2):290-303.
    [26] ALTMAN B J,STINE Z E,DANG C V.From Krebs to clinic:glutamine metabolism to cancer therapy[J].Nat Rev Cancer,2016,16(11):749.
    [27] AGATHOCLEOUS M,MEACHAM C E,BURGESS R J,et al.Ascorbate regulates haematopoietic stem cell function and leukaemogenesis[J].Nature,2017,549(7673):476-481.
    [28] OTTO A M.Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism[J].Cancer Metab,2016,4:5.
    [29] VANDER HEIDEN M G,CANTLEY L C,THOMPSON C B.Understanding the Warburg effect:the metabolic requirements of cell proliferation[J].Science,2009,324(5930):1029-1033.
    [30] MUSHARRAF S G,SIDDIQUI A J,SHAMSI T,et al.SERUM metabolomics of acute lymphoblastic leukaemia and acute myeloid leukaemia for probing biomarker molecules[J].Hematol Oncol,2017,35(4):769-777.
    [31] GUO D M,LIU Q Q,LI B B,et al.Severe aplastic anemia preceding acute monocytic leukemia in an adult with acquired trisomy 21:A case report[J].Oncol Lett,2014,7(2):565-567.
    [32] YANG B Y,LI X L,YAO Y,et al.Metabolomics ofchronic myelogenous leukemia based on GC-MS[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2017,25(6):1585-1591.
    [33] CHEN W L,WANG J H,ZHAO A H,et al.A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value[J].Blood,2014,124(10):1645-1654.
    [34] WANG Y H,ZHANG L M,CHEN W L,et al.Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis[J].J Proteome Res,2013,12(10):4393-4401.
    [35] ZHANG X L,YANG J,CHEN M J,et al.Metabolomics profiles delineate uridine deficiency contributes to mitochondria-mediated apoptosis induced by celastrol in human acute promyelocytic leukemia cells[J].Oncotarget,2016,7(29):46557-46572.
    [36] PERNICOVA I,KORBONITS M.Metformin:mode of action and clinical implications for diabetes and cancer[J].Nat Rev Endocrinol,2014,10(3):143-156.
    [37] MILLER R A,BIRNBAUM M J.An energetic tale of AMPK-independent effects of metformin[J].J Clin Invest,2010,120(7):2267-2270.
    [38] SCOTLAND S,SALAND E,SKULI N,et al.Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells[J].Leukemia,2013,27(11):2129-2138.
    [39] KOOPAL C,MARAIS A D,WESTERINK J,et al.Effect of adding bezafibrate to standard lipid-lowering therapy on post-fat load lipid levels in patients with familial dysbetalipoproteinemia.A randomized placebo-controlled crossover trial[J].J Lipid Res,2017,58(11):2180-2187.
    [40] SOUTHAM A D,KHANIM F L,HAYDEN R E,et al.Drugredeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids[J].Cancer Res,2015,75(12):2530-2540.
    [41] STÄUBERT C,BHUIYAN H,LINDAHL A,et al.Rewired metabolism in drug-resistant leukemia cells:a metabolic switch hallmarked by reduced dependence on exogenous glutamine[J].J Biol Chem,2015,290(13):8348-8359.
  • [1] 万立志, 王境焓, 吴春蓉, 李玲.  基于代谢组学技术的烟酰胺协同两性霉素B抑制白念珠菌的作用机制研究 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202307034
    [2] 刘耀阳, 吴歆, 周凌, 赵颖, 徐沪济.  基于生物标志物探索系统性红斑狼疮中医药治疗机制的研究进展 . 药学实践与服务, 2023, 41(4): 197-201. doi: 10.12206/j.issn.2097-2024.202206131
    [3] 马小雨, 罗彩萍, 刘悦.  代谢组学在乳腺癌诊疗中应用的研究进展 . 药学实践与服务, 2023, 41(3): 139-145. doi: 10.12206/j.issn.2097-2024.202109112
    [4] 何永平, 焦杨, 刘悦.  胆管癌代谢组学研究进展 . 药学实践与服务, 2023, 41(12): 705-709, 732. doi: 10.12206/j.issn.2097-2024.202211025
    [5] 秦烨, 丁欣, 张雅.  参附汤抗阿霉素心肌病小鼠血清代谢组学研究 . 药学实践与服务, 2022, 40(2): 108-112. doi: 10.12206/j.issn.1006-0111.202105116
    [6] 郑约楠, 邵国建, 张一帆, 邵玲就, 周琪, 司亚晨.  黄连提取物减轻脓毒症相关急性肾损伤的代谢组学研究 . 药学实践与服务, 2020, 38(5): 435-440. doi: 10.12206/j.issn.1006-0111.202003127
    [7] 杜毅, 丁德英, 吕磊, 李玲.  基于GC-MS技术的金钱草干预结晶肾损伤小鼠血清代谢组学研究 . 药学实践与服务, 2019, 37(4): 332-336. doi: 10.3969/j.issn.1006-0111.2019.04.009
    [8] 王学雷, 晁玉凡, 高松燕, 董昕, 温晓飞.  基于UPLC-Q-TOF/MS平台的结晶肾损伤小鼠的尿液代谢组学研究 . 药学实践与服务, 2019, 37(2): 126-134. doi: 10.3969/j.issn.1006-0111.2019.02.006
    [9] 周倩, 刘奎, 马静, 谭光国.  芪附汤对大鼠抗阿霉素心脏毒性作用的血清气相色谱-质谱代谢组学研究 . 药学实践与服务, 2018, 36(4): 313-317. doi: 10.3969/j.issn.1006-0111.2018.04.006
    [10] 袁颖超, 廖秋菊.  炎性细胞因子与膝骨关节炎诊断及治疗的最新研究进展 . 药学实践与服务, 2018, 36(1): 9-12. doi: 10.3969/j.issn.1006-0111.2018.01.002
    [11] 贾雨婷, 靳雨晨, 谭光国.  四逆汤治疗甲状腺功能减退症的血清代谢组学研究 . 药学实践与服务, 2016, 34(3): 237-240,248. doi: 10.3969/j.issn.1006-0111.2016.03.011
    [12] 杨宇, 王慧, 曹颖瑛, 朱臻宇.  基于气相色谱-质谱技术对用咪康唑处理的白念珠菌的代谢组学研究 . 药学实践与服务, 2015, 33(3): 209-212. doi: 10.3969/j.issn.1006-0111.2015.03.005
    [13] 纪松岗, 吴琼, 朱臻宇, 董昕, 洪战英, 柴逸峰.  左卡尼汀缓解顺铂造成急性肾损伤的血清代谢组学研究 . 药学实践与服务, 2015, 33(5): 429-433. doi: 10.3969/j.issn.1006-0111.2015.05.012
    [14] 王彦, 俞仲望, 陈思, 李玲, 朱臻宇.  气相色谱-质谱联用结合代谢组学方法研究不同极化状态下小胶质细胞的代谢差异 . 药学实践与服务, 2015, 33(3): 226-230. doi: 10.3969/j.issn.1006-0111.2015.03.009
    [15] 刘悦, 赵亮, 李燕, 朱臻宇, 柴逸峰.  肝细胞性肝癌代谢组学研究进展 . 药学实践与服务, 2013, 31(2): 81-85. doi: 10.3969/j.issn.1006-0111.2013.02.001
    [16] 胡耀华, 王淑萍, 姜鹏, 向丽, 张卫东, 柳润辉.  代谢组学及其在中药复方中的应用 . 药学实践与服务, 2010, 28(6): 401-405,455.
    [17] 蒋海强, 马斌, 聂磊, 李运伦.  高血压病肝阳上亢证患者血清样品的核磁共振谱代谢组学研究 . 药学实践与服务, 2010, 28(4): 258-261.
    [18] 黄瑛.  代谢组学在药物毒理学中的应用 . 药学实践与服务, 2009, 27(3): 165-166,173.
    [19] 史国兵.  白癜风的发病机制及其治疗药物的现状 . 药学实践与服务, 2003, (1): 8-10.
    [20] 鱼爱和, 戴芸.  药源性肝病 . 药学实践与服务, 2003, (2): 71-73.
  • 加载中
计量
  • 文章访问数:  2817
  • HTML全文浏览量:  316
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-12
  • 修回日期:  2019-06-21

代谢组学在白血病中的研究进展

doi: 10.3969/j.issn.1006-0111.2019.05.001
    基金项目:  国家自然科学基金(81703674)

摘要: 代谢组学是对生物系统(细胞、组织、器官、生命体)中所有内源性小分子代谢物进行定性和定量分析的一门新学科,通过研究代谢物和代谢通路改变与生理病理变化之间的规律,揭示疾病的代谢本质。白血病是一种常见的血液系统恶性肿瘤,它的发生发展与代谢密切相关,代谢组学发现的内源性小分子代谢物已经广泛应用于白血病的发病机制、诊断和药效机制研究并取得了显著进展。综述近年来代谢组学在白血病发病机制、诊断和药效机制方面的研究进展,以期为进一步研究提供参考。

English Abstract

宋志强, 朱臻宇, 刘悦, 柴逸峰. 代谢组学在白血病中的研究进展[J]. 药学实践与服务, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
引用本文: 宋志强, 朱臻宇, 刘悦, 柴逸峰. 代谢组学在白血病中的研究进展[J]. 药学实践与服务, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
SONG Zhiqiang, ZHU Zhenyu, LIU Yue, CHAI Yifeng. Research progress of metabolomics in leukemia[J]. Journal of Pharmaceutical Practice and Service, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
Citation: SONG Zhiqiang, ZHU Zhenyu, LIU Yue, CHAI Yifeng. Research progress of metabolomics in leukemia[J]. Journal of Pharmaceutical Practice and Service, 2019, 37(5): 385-389,399. doi: 10.3969/j.issn.1006-0111.2019.05.001
参考文献 (41)

目录

    /

    返回文章
    返回