留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

核-壳结构的脂质-聚合物杂化纳米粒的研究进展

刘丹 张军东 廉云飞 房秋雨 李娟

刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
引用本文: 刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Citation: LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003

核-壳结构的脂质-聚合物杂化纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2018.01.003

Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles

  • 摘要: 核-壳结构的脂质-聚合物杂化纳米粒(CSLPHNs)是以具有生物可降解性的聚合物纳米粒为核,外层包覆单层或多层具有生物膜仿生性的脂质壳而形成,结合了纳米粒和脂质体的双重优点,具有粒径小、载药量高、生物相容性好及缓控释给药等优势,在药物递送系统中应用甚广。笔者在查阅近年国内外文献的基础上归纳了CSLPHNs的基本特性、制备方法及在眼部给药、肿瘤治疗及临床诊断成像中的最新研究进展。
  • [1] Mandal B, Bhattacharjee H, Mittal N, et al. Core shell-type lipid polymer hybrid nanoparticles as a drug delivery platform[J]. Nanomedicine, 2013, 9(4):474-491.
    [2] Hadinoto K, Sundaresan A, Cheow WS. Lipid polymer hybrid nanoparticles as a new generation therapeutic delivery platform:a review[J].Eur J Pharm Biopharm, 2013, 85(3Pt A):427-443.
    [3] 赵一擎, 刘颖, 冯年平. 脂质聚合物纳米粒的研究进展[J]. 华西药学杂志, 2014, 29(5):602-605.
    [4] 王盈. 载溶酶体的脂质-聚合物杂化纳米粒的制备、表征和胶体稳定性评价[J]. 中国医药工业杂志,2016,47(11):1453.
    [5] Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery[J]. Biomaterials, 2009, 30(8):1627-1634.
    [6] 杨龙, 陈凌云, 魏刚. 眼用脂质纳米制剂的研究进展[J]. 中国医药工业杂志, 2016, 47(12):1592-1599.
    [7] Zhang L, Zhu D, Dong X, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery[J].Int J Nanomedicine,2015, 10:2101-2114.
    [8] Almeida H, Amaral MH, Lob o P, et al. Applications of poloxamers in ophthalmic pharmaceutical formulations:an overview[J].Expert Opin Drug Deliv, 2013, 10(9):1223-1237.
    [9] Bucolo C, Drago F, Salomone S. Ocular drug delivery:a clue from nanotechnology[J].Front Pharmacol, 2012, 3(3):188.
    [10] 蒋敏, 甘莉, 甘勇, 等. 新型眼用脂质载体制剂的研究进展[J]. 中国药学杂志, 2012, 47(16):1265-1270.
    [11] Diebold Y, Jarrín M, Saez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP)[J]. Biomaterials, 2007, 28(8):1553-1564.
    [12] Gan L, Wang J, Zhao Y, et al. Hyaluronan-modified core shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection[J]. Biomaterials, 2013, 34(24):5978-5987.
    [13] Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859):2224-2260.
    [14] Krishnamurthy S, Vaiyapuri R, Zhang L, et al. Lipid-coated polymeric nanoparticles for cancer drug delivery[J].Biomater Sci, 2015, 3(7):923-936.
    [15] Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents.[J]. Adv Drug Deliv Rev, 2002, 54(5):675-693.
    [16] Shen Z, Loe DT, Awino JK, et al. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles[J]. Nanoscale, 2016, 8(31):14821-14835.
    [17] Wang F, Chen L, Zhang R, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer[J]. J Control Release, 2014, 196:222-233.
    [18] Shi K, Zhou J, Zhang Q, et al. Arginine-glycine-aspartic acid-modified lipid-polymer hybrid nanoparticles for docetaxel delivery in glioblastoma multiforme[J]. J Biomed Nanotechnol, 2015, 11(3):382-391.
    [19] Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery[J]. Int J Mol Sci, 2014, 15(10):17565-17576.
    [20] 张悦, 邢仕歌, 王震, 等. 核酸适配体在靶向药物传递中的研究进展[J]. 生物化学与生物物理进展, 2015, 42(3):236-243.
    [21] Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells[J]. Int J Nanomedicine, 2014, 9:1083-1096.
    [22] Zhang LJ, Wu B, Zhou W, et al. Two-component reduction-sensitive lipid polymer hybrid nanoparticles for triggered drug release and enhanced in vitro and in vivo anti-tumor efficacy[J]. Biomater Sci, 2016, 5(1):98-110.
    [23] Kong SD, Sartor M, Hu CM, et al. Magnetic field activated lipid polymer hybrid nanoparticles for stimuli-responsive drug release[J]. Acta Biomater, 2013, 9(3):5447-5452.
    [24] Clawson C, Ton L, Aryal S, et al. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding[J]. Langmuir, 2011, 27(17):10556-10561.
    [25] Yan J, Wang Y, Zhang X, et al. Targeted nanomedicine for prostate cancer therapy:docetaxel and curcumin co-encapsulated lipid polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo[J]. Drug Deliv, 2016, 23(5):1757-1762.
    [26] Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer[J]. Biomaterials, 2015, 46:13-25.
    [27] Mieszawska AJ, Gianella A, Cormode DP, et al. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging[J]. Chem Commun(Camb), 2012, 48(47):5835-5837.
  • [1] 陈昕璐, 高原, 李鹃鹃, 郭欢欢, 王卓, 高申.  mRNA脂质纳米粒载药系统的构建及体外评价 . 药学实践与服务, 2023, 41(5): 291-295. doi: 10.12206/j.issn.2097-2024.202302026
    [2] 代宇, 王宏播, 卞康晴, 郭灵怡, 俞媛.  细胞膜仿生纳米载体的制备及应用研究进展 . 药学实践与服务, 2023, 41(3): 135-138, 145. doi: 10.12206/j.issn.2097-2024.202202058
    [3] 张晶, 顾永卫, 武鑫.  适配体C2min介导的可靶向2种前列腺癌基因的递送系统 . 药学实践与服务, 2020, 38(1): 47-51,66. doi: 10.3969/j.issn.1006-0111.201906038
    [4] 程丹, 许幼发, 傅志勤, 陈建明.  靶向肿瘤微环境的紫杉醇前药研究进展 . 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
    [5] 韩凌, 孙治国, 鲁莹.  抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法 . 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
    [6] 刘曼, 刘丽云, 孙凡, 林厚文.  靶向肺癌干细胞的海绵抗肿瘤活性化合物的发现 . 药学实践与服务, 2017, 35(4): 304-307. doi: 10.3969/j.issn.1006-0111.2017.04.005
    [7] 蒋琦, 钱其军.  化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展 . 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
    [8] 高洪元, 吴建勇, 倪曙民.  双级靶向纳米载体在脑肿瘤诊断和治疗方面的应用 . 药学实践与服务, 2015, 33(1): 9-12,16. doi: 10.3969/j.issn.1006-0111.2015.01.003
    [9] 李文清, 邹豪, 钟延强.  肿瘤靶向纳米递释系统存在问题的分析 . 药学实践与服务, 2015, 33(2): 106-109,170. doi: 10.3969/j.issn.1006-0111.2015.02.003
    [10] 孙囡囡, 刘嘉, 郑灿辉, 周有骏.  新型四氢-2-萘醇类化合物的合成、晶体结构及抗肿瘤活性 . 药学实践与服务, 2014, 32(3): 191-194. doi: 10.3969/j.issn.1006-0111.2014.03.007
    [11] 刘建清, 张晶, 赵佳丽, 宋洪涛.  纳米结构脂质载体促进难溶性药物口服吸收机制的研究进展 . 药学实践与服务, 2014, 32(4): 254-256,277. doi: 10.3969/j.issn.1006-0111.2014.04.004
    [12] 吴韫韬, 张依依.  聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展 . 药学实践与服务, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
    [13] 夏爱晓, 宋倩倩, 孙渊.  固体脂质纳米粒制备及应用研究进展 . 药学实践与服务, 2012, 30(5): 331-333,368. doi: 10.3969/j.issn.1006-0111.2012.05.003
    [14] 吴昊, 宋洪涛.  西罗莫司纳米结构脂质载体分散液的制备及其体外释放度考察 . 药学实践与服务, 2012, 30(3): 189-193. doi: 10.3969/j.issn.1006-0111.2012.03.009
    [15] 温许, 胡雄伟, 吴昊, 宋洪涛.  纳米结构脂质载体用于难溶性药物口服传递的研究进展 . 药学实践与服务, 2012, 30(4): 254-257,301.
    [16] 王晓宇, 高静, 张玮, 朱全刚, 武鑫, 高申.  细胞外激活纳米载药系统研究进展 . 药学实践与服务, 2012, 30(1): 4-7,57. doi: 10.3969/j.issn.1006-0111.2012.01.002
    [17] 陈婷, 鲁莹.  载抗肿瘤药物纳米靶向给药系统的研究进展 . 药学实践与服务, 2011, 29(3): 176-178,196.
    [18] 官东秀, 冯祚臻.  临床药师对1例服用分子靶向药物吉非替尼的肿瘤患者的药学监护 . 药学实践与服务, 2010, 28(4): 310-312.
    [19] 薛龙, 孙爱军.  恶性肿瘤靶向治疗方法的进展及应用 . 药学实践与服务, 2008, (2): 81-83.
    [20] 侯雪梅, 崔黎丽, 李国栋, 李卫华.  抗肿瘤药物靶向制剂研究进展 . 药学实践与服务, 2007, (5): 273-275,280.
  • 加载中
计量
  • 文章访问数:  3687
  • HTML全文浏览量:  329
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-12-28

核-壳结构的脂质-聚合物杂化纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2018.01.003

摘要: 核-壳结构的脂质-聚合物杂化纳米粒(CSLPHNs)是以具有生物可降解性的聚合物纳米粒为核,外层包覆单层或多层具有生物膜仿生性的脂质壳而形成,结合了纳米粒和脂质体的双重优点,具有粒径小、载药量高、生物相容性好及缓控释给药等优势,在药物递送系统中应用甚广。笔者在查阅近年国内外文献的基础上归纳了CSLPHNs的基本特性、制备方法及在眼部给药、肿瘤治疗及临床诊断成像中的最新研究进展。

English Abstract

刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
引用本文: 刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Citation: LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
参考文献 (27)

目录

    /

    返回文章
    返回