留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

辐射防护相关信号通路研究现状

王静 章越凡 李铁军

王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
引用本文: 王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Citation: WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003

辐射防护相关信号通路研究现状

doi: 10.3969/j.issn.1006-0111.2017.01.003
基金项目: “重大新药创制”科技重大专项:军队特需药品发现技术平台(2011ZXJ09201-012)

Signaling pathways involved in radioprotection

  • 摘要: 人们在生活中接触到各种辐射,长期或者大剂量的辐射能够导致组织损伤,其机制通常与细胞凋亡、坏死、炎症等相关。目前关于辐射防护的研究越来越多,其中涉及多条通路,代表性的通路有:NFκB通路、MAPK通路、PI3K/Akt通路、p53通路以及STAT3通路。笔者综述了上述通路在辐射防护领域的作用与研究现状。
  • [1] Kamran MZ,Ranjan A, Kaur N,et al.Radioprotective agents:strategies andtranslational advances[J]. Med Res Rev, 2016, 36(3):461-493.
    [2] 王恺,刘超,刘永学.辐射防护剂的研究进展[J]. 癌变·畸变·突变, 2014, 26(2):157-160.
    [3] 王坤平, 徐勇, 李长燕.抗辐射药物研发进展[J]. 军事医学, 2015,39(6):464-467.
    [4] 舒彬, 刘真, 贾赤宇. 急性肺损伤/急性呼吸窘迫综合征与NF-κB信号转导关系的研究进展[J]. 中华损伤与修复杂志(电子版), 2016,11(2):147-150.
    [5] Joyce D, Albanese C, Steer J,et al.NF-kappaB and cell-cycle regulation:the cyclinconnection[J]. Cytokine Growth Factor Rev, 2001, 12(1):73-90.
    [6] Jung M, Dritschilo A. NF-kappa B signaling pathway as a target for human tumor radiosensitization[J]. Semin Radiat Oncol, 2001,11(4):346-351.
    [7] Russell JS, Raju U, Gumin GJ, et al. Inhibition of radiation-induced nuclear factor-kappaB activation by an anti-Ras single-chain antibody fragment:lack of involvement in radiosensitization[J]. Cancer Res, 2002, 62(8):2318-2326.
    [8] Gudkov AV, Komarova EA. Radioprotection:smart games with death[J]. J Clin Invest, 2010, 120(7):2270-2273.
    [9] Wang Y,Meng A, Lang H, et al. Activation of nuclear factor kappaB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage[J]. Cancer Res, 2004, 64(17):6240-6246.
    [10] Burdelya LG,Krivokrysenko VI, Tallant TC,et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models[J]. Science, 2008, 320(5873):226-230.
    [11] Pal HC,Athar M, Elmets CA,et al. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NF kappaB signaling pathways in SKH-1 hairless mice[J]. Photochem Photobiol, 2015, 91(1):225-234.
    [12] Morrison DK. MAP kinase pathways[J]. Cold Spring HarbPerspect Biol, 2012, 4(11):1-5.
    [13] Leach JK,Van Tuyle G, Lin PS, et al. Ionizing radiation-induced mitochondria-dependent generation of reactive oxygen/nitrogen[J]. Cancer Res, 2001, 61(10):3894-3901.
    [14] Hagan MP, Wang L, Hanley JR, et al. Ionizing radiation-induced mitogen-activated protein (MAP) kinase activation in DU145 prostate carcinoma cells:MAP kinase inhibition enhances radiation-induced cell killing and G2/M-phase arrest[J]. Radiat Res, 2000,153(4):371-383.
    [15] Yacoub A,McKinstry R, Hinman D, et al. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling[J]. Radiat Res, 2003, 159(4):439-452.
    [16] Golding SE, Rosenberg E, Neill S, et al. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response[J]. Cancer Res, 2007, 67(3):1046-1053.
    [17] Rosette C, KarinM. Ultraviolet light and osmotic stress:activation of the JNK cascade through multiple growth factor and cytokine receptors[J]. Science, 1996, 274(5290):1194-1197.
    [18] Bar-Shira A,Rashi-Elkeles S, Zlochover L,et al. ATM-dependent activation of the gene encoding MAP kinase phosphatase 5 by radiomimetic DNA damage[J]. Oncogene, 2002, 21(5):849-855.
    [19] Potapova O, Haghighi A, Bost F, et al. The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin[J]. J Biol Chem, 1997, 272(22):14041-14044.
    [20] Hayakawa J, Depatie C, Ohmichi M, et al. The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2(ATF2)-dependent enhanced DNA repair[J]. J Biol Chem, 2003, 278(23):20582-20592.
    [21] MacLaren A, Black EJ, Clark W, et al. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation[J]. Mol Cell Biol, 2004, 24(20):9006-9018.
    [22] Wang XF,Mcgowan CH, Zhao M,et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest[J]. Mol Cell Biol, 2000,20(13):4543-4552.
    [23] Toulany M, BaumannM, RodemannHP. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Rasactivity[J]. Mol Cancer Res, 2007, 5(8):863-872.
    [24] McKenna WG,Muschel RJ, Gupta AK,et al. The RAS signal transduction pathway and its role in radiation sensitivity[J]. Oncogene, 2003, 22(37):5866-5875.
    [25] Bonnaud S,Niaudet C, Legoux F,et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis[J]. Cancer Res, 2010, 70(23):9905-9915.
    [26] Wang J, Zhang Y, Zhu Q,et al.Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53[J]. Environ Toxicol Pharmacol, 2016, 46:311-318.
    [27] Komarova EA,Kondratov RV, Wang K, et al. Dual effect of p53 on radiation sensitivity in vivo:p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice[J]. Oncogene, 2004, 23(19):3265-3271.
    [28] 陈晓艳, 张江虹,邵春林. STAT3与辐射敏感相关性的研究进展[J]. 国际放射医学核医学杂志, 2016, 40(3):191-195.
    [29] Tan PX, Du SS, Ren C,et al. Radiation-induced Cochlea hair cell death:mechanisms and protection[J]. Asian Pac J Cancer Prev, 2013, 14(10):5631-5635.
    [30] Goel A, Aggarwal BB.Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs[J]. Nutr Cancer, 2010, 62(7):919-930.
  • [1] 陈帅, 李安鹏, 李星星, 赵庆杰, 邹燕.  Hippo 信号通路在器官再生过程中的作用机制研究进展 . 药学实践与服务, 2023, 41(8): 472-477. doi: 10.12206/j.issn.2097-2024.202301008
    [2] 方宇昕, 李育, 刘宝姝, 董国强.  磷脂酰肌醇蛋白聚糖-3靶向治疗肝细胞癌的研究进展 . 药学实践与服务, 2023, 41(10): 586-593. doi: 10.12206/j.issn.2097-2024.202307047
    [3] 姚一青, 方家豪, 马荟琳, 王璇, 吕狄亚.  抗辐射天然产物研究进展 . 药学实践与服务, 2022, 40(5): 427-432. doi: 10.12206/j.issn.2097-2024.202101033
    [4] 姚茹冰, 彭浩, 蔡孟成, 李霞.  基于网络药理学的青风藤治疗类风湿关节炎的作用机制研究 . 药学实践与服务, 2021, 39(1): 17-22. doi: 10.12206/j.issn.1006-0111.202004117
    [5] 张素丽, 李雯雯, 徐艺珈, 赵明沂, 刘岩峰.  外周神经损伤后再生的相关信号通路 . 药学实践与服务, 2021, 39(5): 391-394, 430. doi: 10.12206/j.issn.1006-0111.202101027
    [6] 肖志军, 刘萃萃, 陆赛花, 蔡建, 徐峰.  基于网络药理学研究柴胡达胸合剂治疗新型冠状病毒肺炎的作用机制 . 药学实践与服务, 2020, 38(4): 289-295. doi: 10.12206/j.issn.1006-0111.202004023
    [7] 孙会娟, 赵涛.  五倍子酸对60Co-γ射线辐照人肠上皮细胞的防护效应研究 . 药学实践与服务, 2019, 37(4): 299-303. doi: 10.3969/j.issn.1006-0111.2019.04.003
    [8] 齐阳, 许维恒, 张俊平, 宋洪涛.  PP2C蛋白磷酸酶调控的细胞信号通路研究进展 . 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
    [9] 汪涛, 周保柱, 邱彦, 李茂星, 刘延彤.  藓生马先蒿苯乙醇苷通过激活mTOR信号通路改善高原记忆损伤 . 药学实践与服务, 2017, 35(3): 238-242. doi: 10.3969/j.issn.1006-0111.2017.03.011
    [10] 张海容.  术前复方苦参注射液联合化疗对肺癌患者恶性程度的影响 . 药学实践与服务, 2016, 34(4): 359-362. doi: 10.3969/j.issn.1006-0111.2016.04.020
    [11] 梁华军, 阎澜, 曹永兵, 姜远英, 颜天华.  白色念珠菌TOR信号转导通路研究现状 . 药学实践与服务, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
    [12] 刘佃花, 张恩晖, 刘冲, 范博士, 蔡国君.  烟碱致动脉粥样硬化的N胆碱受体信号通路 . 药学实践与服务, 2014, 32(2): 81-84. doi: 10.3969/j.issn.1006-0111.2014.02.001
    [13] 杨宏, 倪敏, 赵心彬, 陶霞.  辐射致组织损伤凋亡机制的研究概况 . 药学实践与服务, 2014, 32(2): 96-97,149. doi: 10.3969/j.issn.1006-0111.2014.02.005
    [14] 王庆宾, 韩婷, 孙连娜, 尚雯.  抗辐射的天然药物研究进展 . 药学实践与服务, 2012, 30(3): 171-174,177. doi: 10.3969/j.issn.1006-0111.2012.03.005
    [15] 刘玉明, 张术, 储智勇.  核辐射事故伤药物防治研究进展 . 药学实践与服务, 2011, 29(5): 321-323,346.
    [16] 李祺, 刘霞.  胆碱能抗炎通路的信号机制研究 . 药学实践与服务, 2010, 28(5): 325-327,338.
    [17] 邬蓉, 高守红, 辛海量.  人参抗辐射损伤研究概况 . 药学实践与服务, 2007, (6): 364-366,392.
    [18] 王文俭, 蒋雪涛, 郭涛, 董志超.  辐射法制备喃氟啶植入剂的家兔药物动力学 . 药学实践与服务, 2000, (1): 19-21.
    [19] 王昱, 王子立, 周丽芳.  中药在防治辐射损伤中的应用 . 药学实践与服务, 1996, (5): 317-319.
    [20] 陈崇尚.  抗辐射中药"益康片"通过鉴定 . 药学实践与服务, 1988, (2): 85-85.
  • 加载中
计量
  • 文章访问数:  2440
  • HTML全文浏览量:  215
  • PDF下载量:  1424
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-12-19

辐射防护相关信号通路研究现状

doi: 10.3969/j.issn.1006-0111.2017.01.003
    基金项目:  “重大新药创制”科技重大专项:军队特需药品发现技术平台(2011ZXJ09201-012)

摘要: 人们在生活中接触到各种辐射,长期或者大剂量的辐射能够导致组织损伤,其机制通常与细胞凋亡、坏死、炎症等相关。目前关于辐射防护的研究越来越多,其中涉及多条通路,代表性的通路有:NFκB通路、MAPK通路、PI3K/Akt通路、p53通路以及STAT3通路。笔者综述了上述通路在辐射防护领域的作用与研究现状。

English Abstract

王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
引用本文: 王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Citation: WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
参考文献 (30)

目录

    /

    返回文章
    返回