留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

盐霉素纳米制剂的研究进展

朱冰 盛丹丹 李善心 张黎

朱冰, 盛丹丹, 李善心, 张黎. 盐霉素纳米制剂的研究进展[J]. 药学实践与服务, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
引用本文: 朱冰, 盛丹丹, 李善心, 张黎. 盐霉素纳米制剂的研究进展[J]. 药学实践与服务, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
ZHU Bing, SHENG Dandan, LI Shanxin, ZHANG Li. Advances in the nanotechnology-based drug delivery systems of salinomycin[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
Citation: ZHU Bing, SHENG Dandan, LI Shanxin, ZHANG Li. Advances in the nanotechnology-based drug delivery systems of salinomycin[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003

盐霉素纳米制剂的研究进展

doi: 10.3969/j.issn.1006-0111.2016.06.003

Advances in the nanotechnology-based drug delivery systems of salinomycin

  • 摘要: 盐霉素(salinomycin,SAL)作为一种抗生素,已广泛用于畜牧业,近年来研究人员发现该药对多种肿瘤及肿瘤干细胞具有较强的抑制作用,而且体内外研究及早期临床试验结果均表明SAL具有抗肿瘤多重耐药活性,有望成为一种新型的抗肿瘤药物。但是,SAL的水溶性较差,且有一定的毒副作用,为获得更好的治疗效果,SAL制剂学的研究得到药学界的广泛关注。本文对近年来SAL纳米制剂的研究进展进行综述。
  • [1] Gupta PB, Onder TT,Jiang GZ, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell, 2009, 138(4):645-659.
    [2] Wang Y. Effects of salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells[J]. Med Chem, 2011, 7(2):106-111.
    [3] Dong TT, Zhou HM, Wang LL, et al. Salinomycin selectively targets CD133+ cell subpopulations and decreases malignant traits in colorectal cancer lines[J]. Ann Surg Oncol, 2011, 18(6):1797-1804.
    [4] Kim WK, Kim JH, Yoon K, et al. Salinomycin, a p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest[J]. Invest New Drugs, 2012, 30(4):1311-1318.
    [5] Huczynski A. Salinomycin:a new cancer drug candidate[J]. Chem Biol Drug Des, 2012, 79(3):235-238.
    [6] Ojo OO, Bhadauria S, Rath SK. Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice[J]. Plos One, 2013, 8(7):e69086.
    [7] Barenholz Y. Doxil-the first FDA-approved nano-drug:lessons learned[J]. J Control Release, 2012, 160(2):117-134.
    [8] 巩志荣,何文婷,孙治国,等. 盐霉素钠纳米脂质体的制备及表征[J]. 药学实践杂志, 2015, 33(1):36-39.
    [9] Momekova D, Momekov G, Ivanova J, et al. Sterically stabilized liposomes as a platform for salinomycin metal coordination compounds:physicochemical characterization and in vitro evaluation[J]. J Drug Deliv Sci Technol, 2013, 23(3):215-223.
    [10] Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics:an emerging treatment modality for cancer[J]. Nat Rev Drug Discov, 2008, 7(9):771-782.
    [11] Ni M, Xiong M, Zhang X, et al. Poly (lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells[J]. Int J Nanomedicine, 2015, 10:2537-2554.
    [12] Jiang J, Chen H, Yu C, et al. The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles[J]. Nanomedicine, 2015, 10(12):1863-1879.
    [13] Zhao P, Dong S, Bhattacharyya J, et al. iTEP nanoparticle-delivered salinomycin displays an enhanced toxicity to cancer stem cells in orthotopic breast tumors[J]. Mol Pharm, 2014, 11(8):2703-2712.
    [14] Wang Q, Wu P, Ren W, et al. Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method[J]. Nanoscale Res Lett, 2014, 9(1):351-359.
    [15] Aydin RS. Herceptin-decorated salinomycin-loaded nanoparticles for breast tumor targeting[J]. J Biomed Mater Res A, 2013, 101(5):1405-1415.
    [16] Lei Y, Lai Y,Li Y, et al. Anticancer drug delivery of PEG based micelles with small lipophilic moieties[J]. Int J Pharm, 2013, 453(2):579-586.
    [17] 毛骁丽, 张翮, 俞媛,等. 穿膜肽修饰盐霉素胶束的制备与表征[J]. 中国新药杂志, 2014, 23(23):2812-2816.
    [18] Wei T, Liu J, Ma H, et al. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo[J]. Nano Letters, 2013, 13(6):2528-2534.
    [19] 张杨, 代文兵, 王坚成,等. 载盐霉素聚合物胶束的构建与抗肿瘤干细胞的体外研究[J]. 中国药学杂志, 2014, 49(5):384-391.
    [20] Mao X, Liu J, Gong Z, et al. iRGD-conjugated DSPE-PEG2000 nanomicelles for targeted delivery of salinomycin for treatment of both liver cancer cells and cancer stem cells[J]. Nanomedicine, 2015, 10(17):2677-2695.
    [21] Zhang Y, Zhang H, Wang X, et al. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles[J]. Biomaterials, 2012, 33(2):679-691.
    [22] Wei X, Senanayake TH, Warren G, et al. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors[J]. Bioconjug Chem, 2013, 24(4):658-668.
    [23] Fabbro C, Ali-Boucetta H, Da Ros T, et al. Targeting carbon nanotubes against cancer[J]. Chem Commun(Camb), 2012, 48(33):3911-3926.
    [24] Piovesan S, Cox PA, Smith JR, et al. Novel biocompatible chitosan decorated single-walled carbon nanotubes (SWNTs) for biomedical applications:theoretical and experimental investigations[J]. Phys Chem Chem Phys, 2010, 12(48):15636-15643.
    [25] Yao HJ, Zhang YG, Sun L, et al. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells[J]. Biomaterials, 2014, 35(33):9208-9223.
    [26] Nystr m AM, Fadeel B. Safety assessment of nanomaterials:implications for nanomedicine[J]. J Control Release, 2012, 161(2):403-408.
  • [1] 许子艺, 孙雨菡, 樊莉, 卢光照, 张鹰楠, 张翮.  载阿霉素金纳米粒的制备和细胞毒性研究 . 药学实践与服务, 2024, 42(2): 73-77, 81. doi: 10.12206/j.issn.2097-2024.202308043
    [2] 曾令军, 陈旭, 张灵娜, 张佳良, 宋洪涛, 周欣.  基于pH梯度法的盐酸普萘洛尔立方液晶纳米粒的制备 . 药学实践与服务, 2021, 39(6): 538-541, 565. doi: 10.12206/j.issn.1006-0111.202103034
    [3] 黄思凡, 张元声, 陈建明, 武鑫.  去甲斑蝥素新型制剂研究进展 . 药学实践与服务, 2021, 39(1): 1-3, 8. doi: 10.12206/j.issn.1006-0111.202004038
    [4] 王吉荣, 贡海, 卢光照, 邓莉.  纳米材料在止血方面的研究进展 . 药学实践与服务, 2021, 39(3): 211-214. doi: 10.12206/j.issn.1006-0111.202012015
    [5] 卢光照, 张翮, 樊莉, 孙治国, 鲁莹.  不同途径注射肿瘤RNA纳米脂质体疫苗对结肠癌生长的影响 . 药学实践与服务, 2021, 39(6): 520-524, 556. doi: 10.12206/j.issn.1006-0111.202108094
    [6] 陈珍珍, 陶春, 张雪婷, 周桂芝, 张倩, 宋洪涛.  硫化铜纳米粒的处方工艺优化与体外评价 . 药学实践与服务, 2020, 38(4): 328-333, 345. doi: 10.12206/j.issn.1006-0111.201912092
    [7] 刘萍, 卢光照, 鲁莹, 邹豪.  抗疟药的剂型研究进展 . 药学实践与服务, 2019, 37(6): 481-484. doi: 10.3969/j.issn.1006-0111.2019.06.001
    [8] 韩凌, 孙治国, 鲁莹.  抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法 . 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
    [9] 李现贵, 詹洁琼, 李新方, 佘岚, 马志强, 孙琳虹, 杨峰.  氧化亚铜纳米粒对B16细胞上皮间质转化的影响 . 药学实践与服务, 2017, 35(3): 233-237. doi: 10.3969/j.issn.1006-0111.2017.03.010
    [10] 成念, 赵文萃, 张琦, 王艳萍, 韩丹, 肖轩昂.  用疏水改性的白及多糖制备载紫杉醇纳米粒并对其表征 . 药学实践与服务, 2017, 35(1): 48-53. doi: 10.3969/j.issn.1006-0111.2017.01.012
    [11] 陈大中, 高洁, 解方园, 张翮, 鲁莹, 邹豪, 钟延强.  共载阿霉素和依克立达的PLGA纳米粒的制备及表征 . 药学实践与服务, 2017, 35(3): 219-223,251. doi: 10.3969/j.issn.1006-0111.2017.03.007
    [12] 张鑫, 刘颖, 冯年平.  载药金纳米粒的研究进展 . 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
    [13] 巩志荣, 何文婷, 孙治国, 郭海霞, 钟延强, 鲁莹.  盐霉素钠纳米脂质体的制备及表征 . 药学实践与服务, 2015, 33(1): 36-39,43. doi: 10.3969/j.issn.1006-0111.2015.01.009
    [14] 苑旺, 王美玲, 石岩, 崔黎丽.  季铵化壳聚糖胰岛素纳米粒的制备、处方优化及其初步药效学实验 . 药学实践与服务, 2015, 33(4): 319-323. doi: 10.3969/j.issn.1006-0111.2015.04.008
    [15] 王欢, 佘岚, 王琳召, 马志强, 张欣荣, 杨峰.  氧化介孔碳球纳米粒作为紫杉醇载体的研究 . 药学实践与服务, 2015, 33(2): 114-118. doi: 10.3969/j.issn.1006-0111.2015.02.005
    [16] 邵帅, 崔光华, 周旭, 高钟镐, 黄伟.  中心组合设计法优化载基因壳聚糖纳米粒的最佳转染制备区域 . 药学实践与服务, 2014, 32(6): 419-424. doi: 10.3969/j.issn.1006-0111.2014.06.006
    [17] 夏爱晓, 宋倩倩, 孙渊.  固体脂质纳米粒制备及应用研究进展 . 药学实践与服务, 2012, 30(5): 331-333,368. doi: 10.3969/j.issn.1006-0111.2012.05.003
    [18] 陈婷, 鲁莹.  载抗肿瘤药物纳米靶向给药系统的研究进展 . 药学实践与服务, 2011, 29(3): 176-178,196.
    [19] 许洁, 王菊, 冯年平, 赵继会, 于燕燕, 谭蓉.  星点设计-效应面法优化冬凌草甲素聚乳酸纳米粒的制备工艺 . 药学实践与服务, 2009, 27(5): 345-348,369.
    [20] 曹纯洁.  长循环脂质体的研究进展 . 药学实践与服务, 2005, (1): 1-3.
  • 加载中
计量
  • 文章访问数:  2474
  • HTML全文浏览量:  303
  • PDF下载量:  1931
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 修回日期:  2016-05-24

盐霉素纳米制剂的研究进展

doi: 10.3969/j.issn.1006-0111.2016.06.003

摘要: 盐霉素(salinomycin,SAL)作为一种抗生素,已广泛用于畜牧业,近年来研究人员发现该药对多种肿瘤及肿瘤干细胞具有较强的抑制作用,而且体内外研究及早期临床试验结果均表明SAL具有抗肿瘤多重耐药活性,有望成为一种新型的抗肿瘤药物。但是,SAL的水溶性较差,且有一定的毒副作用,为获得更好的治疗效果,SAL制剂学的研究得到药学界的广泛关注。本文对近年来SAL纳米制剂的研究进展进行综述。

English Abstract

朱冰, 盛丹丹, 李善心, 张黎. 盐霉素纳米制剂的研究进展[J]. 药学实践与服务, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
引用本文: 朱冰, 盛丹丹, 李善心, 张黎. 盐霉素纳米制剂的研究进展[J]. 药学实践与服务, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
ZHU Bing, SHENG Dandan, LI Shanxin, ZHANG Li. Advances in the nanotechnology-based drug delivery systems of salinomycin[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
Citation: ZHU Bing, SHENG Dandan, LI Shanxin, ZHANG Li. Advances in the nanotechnology-based drug delivery systems of salinomycin[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
参考文献 (26)

目录

    /

    返回文章
    返回