留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

脑出血损伤的动物模型及治疗策略的研究进展

魏纯纯 王培 缪朝玉

魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
引用本文: 魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
Citation: WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003

脑出血损伤的动物模型及治疗策略的研究进展

doi: 10.3969/j.issn.1006-0111.2016.04.003
基金项目: 国家自然科学基金项目(81373414,81130061,81422049,81473208),国家863青年科学家项目(2015AA020943)

Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage

  • 摘要: 脑出血是指脑实质内血管破裂引起的出血,是脑卒中的一种类型,占全部卒中的10%~15%。脑出血的发病率和病死率都非常高,而且目前对于它的发病机制尚不完全清楚。因此,根据目前的临床循证医学依据,还没有明确有效的医疗手段可以改善患者的生存率和预后。作为基础研究的重要工具,脑出血动物模型的发展和应用,有力地促进了对脑出血的病理生理过程的了解,改善了对脑出血导致的脑损伤的分子机制的认识。此外,在脑出血动物模型上的研究促成了多个潜在治疗策略的提出,比如抑制凝血酶活性、减少脑出血导致的炎症损伤等。另外,近期干细胞领域的研究工作提示,细胞移植治疗在脑出血治疗中可能将具有很好的前景。笔者对脑出血动物模型的发展和应用,以及脑出血治疗策略的进展情况做一综述。
  • [1] Keep RF, Hua Y, Xi G. Intracerebral haemorrhage:mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012,11(8):720-731.
    [2] Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH):a randomised trial[J]. Lancet, 2005,365(9457):387-397.
    [3] Gu Y, Hua Y, Keep RF, et al. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets[J]. Stroke, 2009,40(6):2241-2243.
    [4] Okauchi M, Hua Y, Keep RF, et al. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats[J]. Stroke, 2009,40(5):1858-1863.
    [5] Wang J, Doré S. Inflammation after intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2007,27(5):894-908.
    [6] Wakisaka Y, Chu Y, Miller JD, et al. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice[J]. J Cereb Blood Flow metab, 2010,30(1):56-69.
    [7] Wagner KR. Modeling intracerebral hemorrhage:glutamate, nuclear factor-kappa B signaling and cytokines[J]. Stroke, 2007,38(2 Suppl):753-758
    [8] Zhao X, Grotta J, Gonzales N, et al. Hematoma resolution as a therapeutic target:the role of microglia/macrophages[J]. Stroke, 2009,40(3 Suppl):S92-94.
    [9] Zhao X, Zhang Y, Strong R, et al. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats[J]. J Cereb Blood Flow metab, 2006,26(6):811-820.
    [10] Zhao X, Sun G, Zhang J, et al.Hematoma resolution as a target for intracerebral hemorrhage treatment:role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Ann Neurol, 2007,61(4):352-362.
    [11] Gonzales NR, Shah J, Sangha N, et al. Design of a prospective, dose-escalation study evaluating the safety of pioglitazone for hematoma resolution in intracerebral hemorrhage (SHRINC)[J]. Int J Stroke, 2013,8(5):388-396.
    [12] Zhao X, Song S, Sun G, et al. Neuroprotective role of haptoglobin after intracerebral hemorrhage[J]. J Neurosci, 2009,29(50):15819-15827.
    [13] Huang FP, Xi G, Keep RF, et al. Brain edema after experimental intracerebral hemorrhage:role of hemoglobin degradation products[J]. J Neurosurg, 2002,96(2):287-293.
    [14] Gu Y, Hua Y, He Y, et al. Iron accumulation and DNA damage in a pig model of intracerebral hemorrhage[J]. Acta Neurochir Supplement, 2011,111:123-128.
    [15] Zhou X, Xie Q, Xi G, et al. Brain CD47 expression in a swine model of intracerebral hemorrhage[J]. Brain Res, 2014,1574:70-76.
    [16] Auriat AM, Silasi G, Wei Z, et al. Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome[J]. Exp Neurol, 2012,234(1):136-143.
    [17] Selim M, Yeatts S, Goldstein JN, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage[J]. Stroke, 2011,42(11):3067-3074.
    [18] Babu R, Bagley JH, Di C, et al. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention[J]. Neurosurg Focus, 2012,32(4):E8.
    [19] Sun Z, Zhao Z, Zhao S, et al. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo[J]. Mol Biol Rep, 2009,36(5):1119-1127.
    [20] Kitaoka T, Hua Y, Xi G, et al. Effect of delayed argatroban treatment on intracerebral hemorrhage-induced edema in the rat[J]. Acta Neurochir Suppl, 2003,86:457-461.
    [21] Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury:deleterious or protective[J]. J Neurochem, 2003,84(1):3-9.
    [22] Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol, 2015,11(1):56-64.
    [23] Chhor V, Le Charpentier T, Lebon S, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro[J]. Brain Behav Immun, 2013,32:70-85.
    [24] Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab, 2007,6(2):137-143.
    [25] Guo J, Chen Q, Tang J, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage[J].Brain Res, 2015,1594:115-124.
    [26] Shimada K, Furukawa H, Wada KE, et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture[J].Stroke, 2015,46(6):1664-1672.
    [27] Fang H, Wang PF, Zhou Y, et al. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury[J]. J Neuroinflamm, 2013,10:27.
    [28] Liu X, Zheng J, Zhou H. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases[J]. Int Immunopharmacol, 2011,11(10):1451-1456.
    [29] Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage[J]. J Neuroinflamm, 2012,9:46.
    [30] Ohnishi M, Katsuki H, Fukutomi C, et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats[J]. Neuropharmacology, 2011,61(5-6):975-980.
    [31] Du D, Yan J, Ren J, et al. Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo[J]. J Med Chem, 2013,56(1):97-108.
    [32] Su X, Wang H, Zhao J, et al. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-kappaB pathway after traumatic brain injury in the rat[J]. Mediat Inflamm, 2011,2011:807142.
    [33] Lei C, Lin S, Zhang C, et al. High-mobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats[J]. Neuroscience, 2013,228:190-199.
    [34] Lee HJ, Kim KS, Kim EJ, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model[J]. Stem Cells, 2007,25(5):1204-1212.
    [35] Bibber B, Sinha G, Lobba AR, et al. A review of stem cell translation and potential confounds by cancer stem cells[J]. Stem Cells Int, 2013,2013:241048.
    [36] Lee HK, Finniss S, Cazacu S, et al. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression[J]. Stem Cells Dev, 2014,23(23):2851-2861.
    [37] Jeon D, Chu K, Lee ST, et al. Neuroprotective effect of a cell-free extract derived from human adipose stem cells in experimental stroke models[J]. Neurobiol Dis, 2013,54:414-420.
    [38] Otero L, Zurita M, Bonilla C, et al. Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis[J]. Cytotherapy, 2012,14(1):34-44.
  • [1] 胡文君, 王品, 郑斯莉, 汪东昇, 缪朝玉.  小鼠心梗模型的建立与早期心电图评价 . 药学实践与服务, 2020, 38(2): 115-119. doi: 10.3969/j.issn.1006-0111.202001011
    [2] 王治, 王淑娜, 徐添颖, 李志勇, 张赛龙, 缪朝玉.  烟酰胺磷酸核糖转移酶基因编辑对人胚胎干细胞生长影响的研究 . 药学实践与服务, 2019, 37(3): 237-240. doi: 10.3969/j.issn.1006-0111.2019.03.009
    [3] 尹萍, 路璐, 陈媛媛, 李丽, 李赟, 童国庆.  来曲唑联合45%高脂饲料诱导生殖内分泌及代谢表型异常的多囊卵巢综合征大鼠模型研究 . 药学实践与服务, 2019, 37(5): 422-426. doi: 10.3969/j.issn.1006-0111.2019.05.007
    [4] 吴岚, 蔡同凯, 张立超, 姜远英, 曹永兵.  系统性红斑狼疮动物模型及其发病机制研究进展 . 药学实践与服务, 2018, 36(6): 481-483,492. doi: 10.3969/j.issn.1006-0111.2018.06.001
    [5] 刘曼, 刘丽云, 孙凡, 林厚文.  靶向肺癌干细胞的海绵抗肿瘤活性化合物的发现 . 药学实践与服务, 2017, 35(4): 304-307. doi: 10.3969/j.issn.1006-0111.2017.04.005
    [6] 曹梦雪, 孙凡, 林厚文.  肿瘤干细胞的治疗耐受机制研究进展 . 药学实践与服务, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
    [7] 杨波, 纪宏宇, 郑东友, 车丽丽, 吴琳华.  基于疾病动物模型的中药药动学研究进展 . 药学实践与服务, 2017, 35(2): 112-115,153. doi: 10.3969/j.issn.1006-0111.2017.02.004
    [8] 王韵, 柴逸峰, 朱臻宇.  基于疾病动物模型的中药药动学研究进展 . 药学实践与服务, 2017, 35(2): 108-111,140. doi: 10.3969/j.issn.1006-0111.2017.02.003
    [9] 杜秀明, 张子腾, 宗英, 余琛琳, 张晓冬, 陆国才.  炎症小体与中枢神经系统疾病 . 药学实践与服务, 2016, 34(1): 12-15. doi: 10.3969/j.issn.1006-0111.2016.01.004
    [10] 田泾, 王卓, 李莉霞.  临床药师参与1例脑出血患者入住ICU的用药治疗与分析 . 药学实践与服务, 2013, 31(4): 304-306,313. doi: 10.3969/j.issn.1006-0111.2013.04.019
    [11] 宋捷, 缪朝玉.  诱导多潜能干细胞的研究进展 . 药学实践与服务, 2012, 30(1): 1-3,13. doi: 10.3969/j.issn.1006-0111.2012.01.001
    [12] 闫明俞, 陈虹.  不同脑区注射6-羟基多巴胺制备帕金森病动物模型的方法 . 药学实践与服务, 2009, 27(1): 1-3.
    [13] 阳盛洪, 粟志远, 王强, 黄矛.  不同绕水平轴旋转刺激方式诱发的大鼠晕动病反应 . 药学实践与服务, 2007, (2): 78-79,87.
    [14] 王少明, 林才经, 杨春波, 施作霖, 庄捷, 阮君山.  大鼠胃粘膜癌前病变实验动物模型的建立 . 药学实践与服务, 2005, (5): 271-272,281.
    [15] 姜健.  产复康冲剂治疗药物终止早孕后出血的疗效观察 . 药学实践与服务, 2003, (5): 266-267.
    [16] 李文杰.  乳酸环丙沙星注射液静滴致周围神经炎1例 . 药学实践与服务, 2002, (1): 59-59.
    [17] 张洪, 朱冬胜.  清开灵对急性中小量脑出血的影响 . 药学实践与服务, 2000, (2): 80-82.
    [18] 陈仁旺, 幸军.  善得定治疗食道静脉曲张出血近况 . 药学实践与服务, 1998, (2): 65-66.
    [19] 任国喜, 柯美宏, 徐广仁, 王玉光.  脑血康口服液治疗高血压性脑出血114例 . 药学实践与服务, 1990, (3): 26-27.
    [20] 王顺年.  治疗子宫出血新药——珍珠精母注射液 . 药学实践与服务, 1984, (2): 82-82.
  • 加载中
计量
  • 文章访问数:  2848
  • HTML全文浏览量:  431
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-05-04

脑出血损伤的动物模型及治疗策略的研究进展

doi: 10.3969/j.issn.1006-0111.2016.04.003
    基金项目:  国家自然科学基金项目(81373414,81130061,81422049,81473208),国家863青年科学家项目(2015AA020943)

摘要: 脑出血是指脑实质内血管破裂引起的出血,是脑卒中的一种类型,占全部卒中的10%~15%。脑出血的发病率和病死率都非常高,而且目前对于它的发病机制尚不完全清楚。因此,根据目前的临床循证医学依据,还没有明确有效的医疗手段可以改善患者的生存率和预后。作为基础研究的重要工具,脑出血动物模型的发展和应用,有力地促进了对脑出血的病理生理过程的了解,改善了对脑出血导致的脑损伤的分子机制的认识。此外,在脑出血动物模型上的研究促成了多个潜在治疗策略的提出,比如抑制凝血酶活性、减少脑出血导致的炎症损伤等。另外,近期干细胞领域的研究工作提示,细胞移植治疗在脑出血治疗中可能将具有很好的前景。笔者对脑出血动物模型的发展和应用,以及脑出血治疗策略的进展情况做一综述。

English Abstract

魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
引用本文: 魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
Citation: WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
参考文献 (38)

目录

    /

    返回文章
    返回