留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

载药金纳米粒的研究进展

张鑫 刘颖 冯年平

张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
引用本文: 张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
Citation: ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002

载药金纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2016.03.002
基金项目: 国家自然科学基金项目(81202925)

Research progress of drug-loading gold nanoparticles

  • 摘要: 近年来,作为一种新型药物递送系统,金纳米粒已引起了广泛关注。由于其特殊的物理化学性质,能与多种类型药物发生相互作用,如蛋白质、核酸、小分子药物等,从而可应用于肿瘤治疗和检测。笔者对载药金纳米粒的制备方法、载药方式和安全性等问题进行综述。
  • [1] Luan QF, Zhou KB, Tan HN, et al. Au-NPs enhanced SPR biosensor based on hairpin DNA without the effect of nonspecific adsorption[J]. Biosens Bioelectron, 2011, 26(5):2473-2477.
    [2] Lee H, Lee K, Kim IK, et al. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species[J].Adv Funct Mater, 2009, 19(12):1884-1890.
    [3] Rana S, Bajaj A, Mout R, et al. Monolayer coated gold nanoparticles for delivery applications[J]. Adv Drug Deliv Rev, 2012, 64(2):200-216.
    [4] Kumar A, Zhang X, Liang XJ. Gold nanoparticles:Emerging paradigm for targered drug delivery system[J]. Biotechnol Adv, 2013, 31(5):593-606.
    [5] Li L, Nurunnabi M, Nafiujjaman M, et al. GSH-mediated photoactivity of pheophorbide a-conjugated haparin/gold nanoparticle for photodynamic therapy[J]. J Control Release, 2013, 171:241-250.
    [6] Rahman WN, Corde S, Yaqi N, et al. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photo beams[J]. Int J Nanomedicine, 2014, 9:2459-2467.
    [7] Van de Broek B, Devoogdt N, D'Hollander A, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy[J]. ACS Nano, 2011, 5(6):4319-4328.
    [8] Ganeshkumar M, Ponrasu T, Raja MT, et al. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 130:64-71.
    [9] Southam G, Beveridge TJ. The occurence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro[J]. Geochim Cosmochim Acta, 1996, 60(20):4369-4376.
    [10] Wen L, Lin ZH, Gu PY, et al. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route[J]. J Nanopart Res, 2009, 11(2):279-288.
    [11] Kumar KP, Paul W, Sharma CP. Green synthesis of gold nanoparticles with Zingiber officinale extract:Characterization and blood compatibility[J]. Process Biochem, 2011, 46(10):2007-2013.
    [12] Guo QQ, Guo QL, Yuan J, et al. Biosynthesis of gold nanoparticles using a kind of flavonol Dihydromyricetin[J]. Colloids Suraces A Physicochem Eng Asp, 2014, 441:127-132.
    [13] Woehrle GH, Brown LO, Hutchison JE. Thiol-functionalized,1.5-nm gold nanoparticles through ligand exchange reactions:scope and mechanism of ligand exchange[J]. J Am Chem Soc, 2005, 127(7):2172-2183.
    [14] Shem PM, Sardar R, Shumaker-parry JS. Soft ligand stabilized gold nanoparticles:Incorporation of bipyridyls and two-dimensional assembly[J]. J Colloid Interface Sci, 2014, 426:107-116.
    [15] Tatarchuk VV, Sergievskaya AP, Zaikovsky VI, et al. Hydrophilic gold nanoparticles stabilized with tris(2-aminoethyl)amine:Preparation and characterization[J]. Colloids Surf A Physicochem Eng Asp, 2014, 441:496-503.
    [16] Hamaguchi K, Kawasaki H, Arakawa R.Photochemical synthesis of glycine-stabilized gold nanoparticles and its heavy-metal-induced aggregation behavior[J]. Colloids Surf A Physicochem Eng Asp, 2010, 367(1-3):167-173.
    [17] Kim ST, Chompoosor A, Yeh YC, et al. Dendronized gold nanoparticles for siRNA delivery[J]. Small, 2012, 8(21):3253-3256.
    [18] Kim CK, Ghosh P, Pagliuca C, et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells[J]. J Am Chem Soc, 2009, 131(4):1360-1361.
    [19] Ding Y, Zhou YY, Chen H,et al. The performance of thiol-terminated PEG paclitaxel-conjugated gold nanoparticles[J]. Biomaterials, 2013, 34(38):10217-10227.
    [20] Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin[J]. J Am Chem Soc, 2010, 132(13):4678-4684.
    [21] Sánchez-Paradinas S, Pérez-Andrés M, Almendral-Parra MJ, et al. Enhanced cytotoxic activity of bile acid cisplatin derivatives by conjugation with gold nanoparticles[J]. J Inorq Biochem, 2014, 131:8-11.
    [22] Kao HW,Lin YY,Chen CC, et al. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model[J]. Nanotechnology, 2014, 25(29):295102.
    [23] Joshi P, Chakraborti S, Ramirez-Vick JE, et al. The anticancer activity of chloroquine gold nanoparticles against MCF-7 breast cancer cells[J]. Colloids Surf B Biointerfaces, 2012, 95(15):195-200.
    [24] Vigderman L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecles[J]. Adv Drug Deliv Rev, 2013, 65(5):663-676.
    [25] Choi CH, Alabi CA, Webster P, et al. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles[J]. Proc Nati Acad Sci U S A, 2010, 107(3):1235-1240.
    [26] Zhang ZW, Jia J, Lai YQ, et al. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells[J]. Bioorg Med Chem, 2010, 18(15):5528-5534.
    [27] Marangoni VS, Paino IM, Zucolotto V. Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells[J]. Colloids Surf B Biointerfaces, 2013, 112:380-386.
    [28] Eshghi H, Sazgarnia A, Rahimizadeh M, et al. Protoporphyrin Ⅸ-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy[J]. Photodiagnosis Photodyn Ther, 2013, 10(3):304-312.
    [29] Bao QY, Geng DD, Xue JW, et al. Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy[J]. Int J Pharm, 2013, 446(1-2):112-118.
    [30] Shen GY,Zhang SB, Hu X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates[J]. Clin Biochem, 2013, 46(16-17):1734-1738.
    [31] Liu L, Du J, Li SJ, et al. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates[J]. Biosens Bioelectron, 2013, 41:730-735.
    [32] Figueroa ER, Lin AY, Yan JX, et al. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy[J]. Biomaterials, 2014, 35(5):1725-1734.
    [33] Haller E, Lindner W, Lämmerhofer M. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular[J]. Anal Chim Acta, 2015, 857:53-63.
    [34] Ramezani F, Habibi M, Rafii-Tabar H, et al. Effect of peptide length on the conjugation to the gold nanoparticle surface:a molecular dynamic study[J]. Daru, 2015, 23(1):9-13.
    [35] Li N, Zhao PX, Astruc D. Anisotropic gold nanoparticles:synthesis, properties, applications, and toxicity[J]. Angew Chem Int Ed Engl, 2014,53(7):1756-1789.
    [36] Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3):325-327.
  • [1] 许子艺, 孙雨菡, 樊莉, 卢光照, 张鹰楠, 张翮.  载阿霉素金纳米粒的制备和细胞毒性研究 . 药学实践与服务, 2024, 42(2): 73-77, 81. doi: 10.12206/j.issn.2097-2024.202308043
    [2] 徐航, 王天宇, 张灵娜, 宋洪涛.  液体创可贴的质量控制标准与安全性研究 . 药学实践与服务, 2023, 41(2): 106-112, 129. doi: 10.12206/j.issn.2097-2024.202103063
    [3] 李婷, 时扣荣, 李智, 王子玉, 曹爱霖, 钱皎.  达比加群酯治疗老年非瓣膜性心房颤动的有效性和安全性评价 . 药学实践与服务, 2023, 41(9): 557-560. doi: 10.12206/j.issn.2097-2024.202207029
    [4] 魏恂, 高珊.  Bimekizumab治疗中/重度斑块状银屑病的疗效与安全性的系统评价 . 药学实践与服务, 2023, 41(7): 449-454. doi: 10.12206/j.issn.2097-2024.202203089
    [5] 熊明彪, 曹辉, 杨德钱.  连花清瘟胶囊对比奥司他韦治疗流行性感冒疗效和安全性的Meta分析 . 药学实践与服务, 2021, 39(5): 454-459. doi: 10.12206/j.issn.1006-0111.202012021
    [6] 严佳, 吴博, 陶春, 宋洪涛.  自制复方酮康唑软膏的药效学和安全性研究 . 药学实践与服务, 2020, 38(4): 322-327. doi: 10.12206/j.issn.1006-0111.201909078
    [7] 李佩瑶, 黄月英, 李传灵, 卞俊.  微凝胶的制备及其在药物缓控释系统中的应用 . 药学实践与服务, 2019, 37(3): 212-215,221. doi: 10.3969/j.issn.1006-0111.2019.03.004
    [8] 陈琪, 刘兴, 刘红亮.  右美托咪定用于神经阻滞的研究进展 . 药学实践与服务, 2018, 36(4): 289-292. doi: 10.3969/j.issn.1006-0111.2018.04.001
    [9] 吴思凡, 谭长宇, 樊红彬, 印晓星, 鲁茜.  奥卡西平和卡马西平治疗脑卒中后继发性癫痫疗效与安全性的Meta分析 . 药学实践与服务, 2018, 36(4): 373-378. doi: 10.3969/j.issn.1006-0111.2018.04.020
    [10] 薛梅萍, 郑茹萍, 林惠娥, 甘惠贞.  西格列汀联合预混胰岛素治疗脆性糖尿病伴高脂血症疗效和安全性的回顾性研究 . 药学实践与服务, 2018, 36(5): 468-470. doi: 10.3969/j.issn.1006-0111.2018.05.020
    [11] 李新方, 李现贵, 马志强, 钟延强, 高钰琪, 杨峰.  薄荷脑鼻腔原位凝胶剂的制备及安全性研究 . 药学实践与服务, 2017, 35(4): 321-324,366. doi: 10.3969/j.issn.1006-0111.2017.04.008
    [12] 孙慧, 张莎莎, 连炜炜.  中药清湿热解毒配方颗粒治疗高尿酸血症的临床疗效及安全性评价 . 药学实践与服务, 2016, 34(1): 79-82,92. doi: 10.3969/j.issn.1006-0111.2016.01.021
    [13] 李莎, 仵文英, 徐晓娜, 李兴华, 马小亚.  正交试验优选硫酸铵梯度法制备苦参碱脂质体的工艺研究 . 药学实践与服务, 2013, 31(4): 286-289. doi: 10.3969/j.issn.1006-0111.2013.04.013
    [14] 温许, 胡雄伟, 吴昊, 宋洪涛.  纳米结构脂质载体用于难溶性药物口服传递的研究进展 . 药学实践与服务, 2012, 30(4): 254-257,301.
    [15] 栗志远, 王新红, 刘桂刚, 闫琼.  呋喃西林溶液制备方法改进及稳定性比较 . 药学实践与服务, 2010, 28(5): 366-368.
    [16] 刘福强, 车延志, 孙丹, 赵惠莹.  99mTc研究胃漂浮片试验的安全性和影响因素 . 药学实践与服务, 2009, 27(2): 104-106,110.
    [17] 张治然, 刁天喜, 高云华.  生物医药的安全性及其对策 . 药学实践与服务, 2009, 27(5): 375-377.
    [18] 吴忠斌, 陈建明.  脂质体包裹血红蛋白的制备方法及质量影响因素 . 药学实践与服务, 2008, (1): 1-4.
    [19] 肖旭.  5-氟尿嘧啶温度敏感性脂质体制备方法的优化 . 药学实践与服务, 1998, (6): 344-346.
    [20] 钟延强, 蒋雪涛, 孙其荣.  白蛋白微球制剂 . 药学实践与服务, 1995, (4): 208-211.
  • 加载中
计量
  • 文章访问数:  2681
  • HTML全文浏览量:  327
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-29
  • 修回日期:  2016-01-29

载药金纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2016.03.002
    基金项目:  国家自然科学基金项目(81202925)

摘要: 近年来,作为一种新型药物递送系统,金纳米粒已引起了广泛关注。由于其特殊的物理化学性质,能与多种类型药物发生相互作用,如蛋白质、核酸、小分子药物等,从而可应用于肿瘤治疗和检测。笔者对载药金纳米粒的制备方法、载药方式和安全性等问题进行综述。

English Abstract

张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
引用本文: 张鑫, 刘颖, 冯年平. 载药金纳米粒的研究进展[J]. 药学实践与服务, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
Citation: ZHANG Xin, LIU Ying, FENG Nianping. Research progress of drug-loading gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 196-200,236. doi: 10.3969/j.issn.1006-0111.2016.03.002
参考文献 (36)

目录

    /

    返回文章
    返回