留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

蒋琦 钱其军

蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
引用本文: 蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
Citation: JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

doi: 10.3969/j.issn.1006-0111.2015.02.019
基金项目: 国家科技重大专项资助项目(No.2013ZX10002-010-007)

Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research

  • 摘要: 肿瘤相关免疫抑制性细胞在肿瘤的发生、发展过程中发挥重要的免疫抑制作用,肿瘤的发展和转移常伴有这些细胞的异常聚集。调节性T细胞(regulatory T cells, Treg)和髓系来源的抑制性细胞(myeloid-derived suppressor cells,MDSC)是免疫抑制性细胞网络的主要成分,它们通过直接或间接作用负向调节其他免疫细胞,抑制抗肿瘤的免疫反应。最新研究显示,有些常规化疗药物除可直接杀伤肿瘤细胞外,还可降低Treg和MDSC的数量,抑制其功能,从而增强抗肿瘤免疫功能。因此,将化疗药物作为预处理方案,凭借其免疫调节作用联合后续的过继性细胞免疫治疗可有效增强抗肿瘤免疫应答。化学免疫治疗策略将改变人们对传统化疗抗肿瘤地位的认识,继而更加合理地应用化疗药物。
  • [1] Thompson RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer[J].Clin Genitourin Cancer,2006,5(3),206-211.
    [2] Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol,2006,6(10):715-727.
    [3] Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol,2009,9(3):162-174.
    [4] Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer,2007,7(11):880-887.
    [5] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.
    [6] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
    [7] 曾益新,吕有勇,朱明华,等.肿瘤学[M].3版. 北京:人民卫生出版社,2012:281-282.
    [8] North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J]. J Exp Med,1982,155(4):1063-1074.
    [9] Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy[J]. Adv Cancer Res,2010,107:1-37.
    [10] Wada S, Yoshimura K, Hipkiss EL, et al. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model[J]. Cancer Res,2009,69(10):4309-4318.
    [11] Ghiringhelli F, Larmonier N, Schmitt E, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol,2004,34(2):336-344.
    [12] Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity[J]. Cancer Immunol Immunother,2013,62(2):203-216.
    [13] Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer,2009,100(11):1697-1703.
    [14] Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients[J]. Cancer Immunol Immunother,2007,56(5):641-648.
    [15] Zhang L,Dermawan K,Jin M,et al.Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy[J].Clin Immunol,2008,129(2):219-229.
    [16] Liu N, Zheng Y, Zhu Y, et al. Selective impairment of CD4+CD25+Foxp3(+) regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J]. Int mmunopharmacol,2011,11(2):212-219.
    [17] Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement[J]. Clin Cancer Res,2008,14(11):3536-3544.
    [18] Reinartz S, Pfisterer J, du Bois A, et al. Suppressive activity rather than frequency of FoxP3(+) regulatory T cells is essential for CA-125-specific T-cell activation after abagovomab treatment[J]. Hum Immunol,2010,71(1):36-44.
    [19] Banissi C, Ghiringhelli F, Chen L, et al. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J]. Cancer Immunol Immunother,2009,58(10):1627-1634.
    [20] Ridolfi L, Petrini M, Granato AM, et al. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25+Foxp3(+) regulatory T-cells in advanced melanoma patients[J]. J Transl Med,2013,11:135.
    [21] Correale P, Cusi MG, Tsang KY, et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol,2005,23(35):8950-8958.
    [22] Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells[J]. Cancer Immunol Immunother,2009,58(7):1033-1045.
    [23] Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol,2009,182(8):4499-4506.
    [24] Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010,70(8):3052-3061.
    [25] Kodumudi KN, Woan K, Gilvary DL, et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res,2010,16(18):4583-4594.
    [26] Kodumudi KN, Weber A, Sarnaik AA, et al. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma[J]. J Immunol,2012,189(11):5147-5154.
    [27] Michels T, Shurin GV, Naiditch H, et al. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner[J]. J Immunotoxicol,2012,9(3):292-300.
    [28] Alizadeh D, Trad M, Hanke NT, et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J]. Cancer Res,2014,74(1):104-118.
    [29] Mikysková R, Indrová M, Vlková V, et al. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment[J]. J Leukoc Biol,2014,95(5):743-753.
    [30] Mikysková R, Indrová M, Pollaková V, et al. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors[J]. J Immunother,2012,35(5):374-384.
  • [1] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202303023
    [2] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202306008
    [3] 邢信昊, 陈林林, 凌忠毅, 王彦.  免疫治疗纠正脓毒症免疫麻痹的研究进展 . 药学实践与服务, 2023, 41(1): 1-7, 35. doi: 10.12206/j.issn.2097-2024.202203113
    [4] 豆甲泰, 刘友昊, 梁启超, 吴宜艳.  血红铆钉菇多糖对RAW264.7巨噬细胞免疫调节作用研究 . 药学实践与服务, 2021, 39(5): 449-453. doi: 10.12206/j.issn.1006-0111.202102005
    [5] 杜勤, 徐红娣.  托珠单抗对类风湿关节炎患者疗效、免疫球蛋白及辅助性T细胞水平的影响 . 药学实践与服务, 2020, 38(1): 71-73,87. doi: 10.3969/j.issn.1006-0111.201905023
    [6] 朱文玉, 姜齐, 张亮, 吴涓, 王洁, 丁红梓.  晚期非小细胞肺癌两种一线化疗方案的疗效观察和药物经济学分析 . 药学实践与服务, 2018, 36(2): 176-179. doi: 10.3969/j.issn.1006-0111.2018.01.017
    [7] 郭玲玲, 仇金荣.  免疫治疗在肝细胞癌治疗中的进展 . 药学实践与服务, 2017, 35(4): 362-366. doi: 10.3969/j.issn.1006-0111.2017.04.019
    [8] 夏涌, 黄健, 钱其军.  提高CAR-T细胞疗法抗癌活性及安全性的研究进展 . 药学实践与服务, 2016, 34(4): 372-376. doi: 10.3969/j.issn.1006-0111.2016.04.023
    [9] 姜文丽, 黄才国.  Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究 . 药学实践与服务, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
    [10] 章浩, 叶真龙, 钱其军.  降低亲和力提高HER2-CAR-T细胞治疗的安全性 . 药学实践与服务, 2016, 34(3): 261-266. doi: 10.3969/j.issn.1006-0111.2016.03.018
    [11] 许燕, 胡明慧, 高蓓蓉, 周选围.  灵芝真菌免疫调节蛋白在体外对不同胃癌细胞的抑制作用 . 药学实践与服务, 2016, 34(3): 223-226,277. doi: 10.3969/j.issn.1006-0111.2016.03.008
    [12] 郑婷, 钱其军.  替吉奥治疗晚期乳腺癌的研究进展 . 药学实践与服务, 2015, 33(6): 557-560. doi: 10.3969/j.issn.1006-0111.2015.06.021
    [13] 寇晓霞, 丁永梅, 黄耀, 袁振刚, 钱其军.  吉西他滨对胰腺癌外周血调节性T细胞影响的研究 . 药学实践与服务, 2015, 33(3): 258-260,268. doi: 10.3969/j.issn.1006-0111.2015.03.018
    [14] 张琪, 夏爱军.  重组人血管内皮抑制素联合化疗治疗非小细胞肺癌疗效的Meta分析 . 药学实践与服务, 2010, 28(6): 451-455.
    [15] 杨丽红, 李小龙, 潘晓东, 王明山, 陈必成, 林永通.  两种免疫抑制剂对肾移植受者外周血象及红细胞生成素的影响 . 药学实践与服务, 2010, 28(1): 32-33,72.
    [16] 梁竹, 何晖, 刘召平.  我院2000~2004年器官移植中免疫抑制剂利用分析 . 药学实践与服务, 2006, (1): 53-55.
    [17] 王雯佶, 刘皋林.  化疗药物细胞保护剂的应用进展 . 药学实践与服务, 2002, (3): 144-147.
    [18] 薛曼朗, 孟丽娟, 徐惠萍.  大黄浸出液治疗肿瘤患者化疗药物渗出性损伤临床观察 . 药学实践与服务, 1998, (6): 340-340.
    [19] 李薇, 郁立群, 吴达聪.  新型免疫抑制剂大环哌喃(FK-506)体外抗人肝癌细胞生长作用观察 . 药学实践与服务, 1995, (5): 273-275.
    [20] 利国威.  新化疗剂KW2152对肺癌细胞株的群体抑制作用 . 药学实践与服务, 1988, (3): 14-15.
  • 加载中
计量
  • 文章访问数:  2682
  • HTML全文浏览量:  204
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 修回日期:  2015-01-26

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

doi: 10.3969/j.issn.1006-0111.2015.02.019
    基金项目:  国家科技重大专项资助项目(No.2013ZX10002-010-007)

摘要: 肿瘤相关免疫抑制性细胞在肿瘤的发生、发展过程中发挥重要的免疫抑制作用,肿瘤的发展和转移常伴有这些细胞的异常聚集。调节性T细胞(regulatory T cells, Treg)和髓系来源的抑制性细胞(myeloid-derived suppressor cells,MDSC)是免疫抑制性细胞网络的主要成分,它们通过直接或间接作用负向调节其他免疫细胞,抑制抗肿瘤的免疫反应。最新研究显示,有些常规化疗药物除可直接杀伤肿瘤细胞外,还可降低Treg和MDSC的数量,抑制其功能,从而增强抗肿瘤免疫功能。因此,将化疗药物作为预处理方案,凭借其免疫调节作用联合后续的过继性细胞免疫治疗可有效增强抗肿瘤免疫应答。化学免疫治疗策略将改变人们对传统化疗抗肿瘤地位的认识,继而更加合理地应用化疗药物。

English Abstract

蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
引用本文: 蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
Citation: JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
参考文献 (30)

目录

    /

    返回文章
    返回