留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

来源于天然产物的抗肿瘤先导结构研究进展

武善超 盛春泉 张万年

武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
引用本文: 武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
Citation: WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005

来源于天然产物的抗肿瘤先导结构研究进展

doi: 10.3969/j.issn.1006-0111.2014.05.005
基金项目: 国家自然科学基金重点项目(30930107).

Advance in anti-cancer lead-compounds derived from natural products

  • 摘要: 肿瘤严重威胁人类生命健康,因此发现新结构类型、新作用机制、更有效的抗肿瘤药成为当务之急。天然产物在抗肿瘤药物发现过程中有着重要的作用和意义。综述几种具有抗肿瘤活性的天然产物,重点阐述其作用机制、抗肿瘤活性及构效关系的研究进展。
  • [1] Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years[J]. J Nat Prod,2007, 70 (3):461-477.
    [2] Kessler JH, Mullauer FB, de Roo GM, et al. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types[J]. Cancer Lett,2007, 251 (1):132-145.
    [3] Zuco V, Supino R, Righetti SC, et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells[J]. Cancer Lett,2002, 175 (1):17-25.
    [4] Chintharlapalli S, Papineni S, Ramaiah SK, et al. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors[J]. Cancer Res,2007, 67 (6):2816-2823.
    [5] Mertens-Talcitt SU, Noratto GD, Li X, et al. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo:role of Sp transcription factors and microRNA-27a:ZBTB10[J]. Mol Carcinog, 2012Mar7,doi: 10.1002/mc.21893.
    [6] Eichenmuller M, Hemmerlein B, Von Schweinits D, et al. Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma[J]. Br J Cancer, 2010, 103 (1):43-51.
    [7] Liu X, Jutooru I, Lei P, et al. Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer[J]. Mol Cancer Ther, 2012, 11 (7):1421-1431.
    [8] Kama E,Szoka L, Palka JA, et al. Betulinic acid inhibits the expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in human endometrial adenocarcinoma cells[J]. Mol Cell Biochem, 2010, 340 (1-2):15-20.
    [9] Pandey MK, Sung B, Aggarwail BB, et al. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells[J]. Int J Cancer, 2010, 127 (2):282-292.
    [10] Liu Y, Luo W. Betulinic acid induces Bax/Bak-independent cytochrome C release in human nasopharyngeal carcinoma cells[J]. Mol Cells, 2012, 33 (5):517-524.
    [11] Yogeeswari P, Sriram D. Betulinic acid and its derivatives:a review on their biological properties[J]. Curr Med Chem, 2005, 12 (6):657-666.
    [12] Eiznhamer DA, Xu ZQ. Betulinic acid:a promising anticancer candidate[J]. I Drugs, 2004, 7 (4):359-373.
    [13] Chintharlli S, Papineni S, Lei P, et al. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and-independent downregulation of specificity proteins (Sp) transcription factors[J]. BMC Cancer, 2011, 11:371.
    [14] Mukheijee R, Kumar V, Srivastava SK, et al. Betulinic acid derivatives as anticancer agents:structure activity relationship[J]. Anticancer Agents Med Chem, 2006, 6 (3):271-279.
    [15] Urban M, Vlkm M, Dzubak P, et al. Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid[J]. Bioorg Med Chem, 2012, 20 (11):3666-3674.
    [16] Ahmad FB, Ghaffari Moghaddam M,Basri M, et al. Anticancer activity of 3-O-acylated betulinic acid derivatives obtained by enzymatic synthesis[J]. Biosci Biotechnol Biochem, 2010, 74 (5):1025-1029.
    [17] Kundu JK,Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol:mechanistic perspectives[J]. Cancer Lett, 2008, 269 (2):243-261.
    [18] Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science, 1997, 275 (5297):218-220.
    [19] Kundu JK, Surh YJ. Molecular basis of chemoprevention by resveratrol:NF-kappaB and AP-1 as potential targets[J]. Mutat Res, 2004, 555 (1-2):65-80.
    [20] Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols[J]. Antioxid Redox Signal, 2005, 7 (11-12):1630-1647.
    [21] Bhardwaj A, Sethi G, Vadhan-Raj S, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells[J]. Blood,2007, 109 (6):2293-2302.
    [22] Cai YJ, Wei QY, Fang JG, et al. The 3,4-dihydroxyl groups are important for trans-resveratrol analogs to exhibit enhanced antioxidant and apoptotic activities[J]. Anticancer Res, 2004, 24 (2B):999-1002.
    [23] Hung LM, Su MJ, Chu WK, et al. The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy[J]. Br J Pharmacol, 2002, 135 (7):1627-1633.
    [24] Saiko P, Szakmary A, Jaeger W, et al. Resveratrol and its analogs:defense against cancer, coronary disease and neurodegenerative maladies or just a fad? [J]. Mutat Res, 2008, 658 (1-2):68-94.
    [25] Jiang GJ, Hu C. Evodiamine:a novel anti-cancer alkaloid from Evodia rutaecarpa[J]. Molecules, 2009, 14 (5):1852-1859.
    [26] Liao CH, Pan SL,Guh JH, et al.Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis, 2005, 26 (5):968-975.
    [27] Zhang C, Fan X, Xu X, et al. Evodiamine induces caspase-dependent apoptosis and S phase arrest in human colon lovo cells[J]. Anticancer Drugs, 2010, 21 (8):766-776.
    [28] Liao CH, Pan SL, Guh JH, et al. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis, 2005, 26 (5):968-975.
    [29] Lee TJ, Kim EJ, Kim S, et al. Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells[J]. Mol Cancer Ther, 2006, 5 (9):2398-2407.
    [30] Takada Y, Kobaysshi Y, Aggarwal BB. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion[J]. J Biol Chem, 2005, 280 (17):17203-17212.
    [31] Yang ZG, Chen AQ, Liu B. Antiproliferation and apoptosis induced by evodiamine in human colorectal carcinoma cells (COLO-205)[J]. Chem Biodivers, 2009, 6 (6):924-933.
    [32] Huang H, Zhang Y, Liu X, et al. Acid sphingomyelinase contributes to evodiamine-induced apoptosis in human gastric cancer SGC-7901 cells[J]. DNA Cell Biol, 2011, 30 (6):407-412.
    [33] Rasul A, Yu B, Zhong L, et al. Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy[J]. Oncol Rep, 2012, 27 (5):1481-1487.
    [34] Wei WT, Chen H, Wang ZH, et al. Enhanced antitumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway[J]. Int J Biol Sci, 2012, 8 (1):1-14.
    [35] Dong G, Sheng C, Wang S, et al. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents[J]. Med Chem, 2010,53 (21):7521-7531.
    [36] Sheng C, Miao Z, Zhang W. New strategies in the discovery of novel non-camptothecin topoisomerase I inhibitors[J]. Curr Med Chem, 2011, 18(28):4389-4409.
    [37] Anand P, Sundaram C, Jhurani S, et al. Curcumin and cancer:an "old-age" disease with an "age-old" solution[J]. Cancer Lett, 2008, 267 (1):133-164.
    [38] Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin":from kitchen to clinic[J]. Biochem Pharmacol, 2008, 75 (4):787-809.
    [39] Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. Int J Biochem Cell Biol, 2009, 41 (1):40-59.
    [40] Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin[J]. Adv Exp Med Biol, 2007, 595:127-148.
    [41] Qiu X, Liu Z, Shao WY, et al. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors[J]. Bioorg Med Chem, 2008, 16(17):8035-8041.
    [42] Safavy A, Raisch KP, Mantena S, et al. Design and development of water-soluble curcumin conjugates as potential anticancer agents[J]. J Med Chem, 2007, 50(24):6284-6288.
    [43] Raj L, Ide T, Chrkar AU, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS[J]. Nature, 2011, 475(7355):231-234.
    [44] Bazerra DP, Castro FO,Alves AP, et al. In vivo growth-inhibition of sarcoma 180 by piplartine and piperine, two alkaloid amides from Piper[J]. Braz J Med Biol Res, 2006, 39(6):801-807.
    [45] Bezerra DP, Militao GC, de Castro FO, et al.Piplartine induces inhibition of leukemia cell proliferation triggering both apoptosis and necrosis pathways[J]. Toxicol In Vitro, 2007, 21(1):1-8.
    [46] Golowine KV, Makhov PB, Teper E, et al. Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells[J]. Prostate, 2013, 73(1):23.
    [47] Bezeera DP, de Castro FO, Alves AP, et al. In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine[J]. J Appl Toxicol, 2008, 28(2):156-163.
  • [1] 叶腾飞, 程涛, 宋平, 计伟莉, 卞晓岚.  8-羟基喹啉衍生物作为潜在的艰难梭菌抗生素的设计、合成和活性评价 . 药学实践与服务, 2023, 41(12): 737-740. doi: 10.12206/j.issn.2097-2024.202303021
    [2] 姚一青, 方家豪, 马荟琳, 王璇, 吕狄亚.  抗辐射天然产物研究进展 . 药学实践与服务, 2022, 40(5): 427-432. doi: 10.12206/j.issn.2097-2024.202101033
    [3] 戴佳炜, 施赛健, 宋瑷蔚, 王志斌, 庄春林, 夏春年.  吲哚查尔酮衍生物FC58的抗白血病多药耐药活性研究 . 药学实践与服务, 2021, 39(4): 305-308. doi: 10.12206/j.issn.1006-0111.202012008
    [4] 马颖, 金永生.  抗丙型肝炎病毒天然产物的研究进展 . 药学实践与服务, 2021, 39(2): 102-107. doi: 10.12206/j.issn.1006-0111.202012003
    [5] 冯坤苗, 吴思佳, 陈文华, 代威, 徐凌川, 韩婷.  泰山白首乌内生真菌多样性及其抗肿瘤活性研究 . 药学实践与服务, 2021, 39(6): 542-548. doi: 10.12206/j.issn.1006-0111.202108089
    [6] 罗川, 马建江, 缪震元, 吴岳林.  沙蟾毒精酯类衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2021, 39(1): 35-37, 57. doi: 10.12206/j.issn.1006-0111.202007022
    [7] 罗川, 喻支梁, 张万年, 缪震元.  非核苷类NEDD8活化酶抑制剂的设计、合成与活性研究 . 药学实践与服务, 2020, 38(1): 35-41. doi: 10.3969/j.issn.1006-0111.201901012
    [8] 赵增, 陈浩, 杨鸟, 孙青龑, 柳润辉.  两面针碱全合成及活性研究进展 . 药学实践与服务, 2017, 35(2): 102-107,149. doi: 10.3969/j.issn.1006-0111.2017.02.002
    [9] 付奔, 田云桃, 丁力, 吴秋业, 郭忠武, 赵庆杰.  13-酰胺基取代苦参碱衍生物的合成及抗肿瘤活性研究 . 药学实践与服务, 2017, 35(1): 12-16. doi: 10.3969/j.issn.1006-0111.2017.01.004
    [10] 侯晓丽, 孙铭学, 高焕焕, 肖凯.  抗炎天然产物活性成分研究进展 . 药学实践与服务, 2015, 33(1): 20-27. doi: 10.3969/j.issn.1006-0111.2015.01.006
    [11] 金鑫, 宋霞, 曹永兵, 姜远英, 孙青龑.  小檗碱的结构改造及其药理活性的研究进展 . 药学实践与服务, 2014, 32(3): 171-175. doi: 10.3969/j.issn.1006-0111.2014.03.003
    [12] 张涛, 王甜甜, 张一凯, 牛春娟, 李令振, 李科.  2-(4-三氟甲基苯基)-4-乙基-呋喃-3-酰胺衍生物的设计、合成及其抗肿瘤活性研究 . 药学实践与服务, 2014, 32(2): 98-101,120. doi: 10.3969/j.issn.1006-0111.2014.02.006
    [13] 孙蕾, 邓华平, 席忠新, 李霞, 孙连娜.  抗肝纤维化的中药有效成分及其作用机制研究进展 . 药学实践与服务, 2012, 30(2): 92-95,127. doi: 10.3969/j.issn.1006-0111.2012.02.004
    [14] 王晓华, 王巍, 刘超美.  5-羟基-4'-硝基-7-取代苄氧基-异黄酮的合成及抗肿瘤活性 . 药学实践与服务, 2012, 30(6): 427-429. doi: 10.3969/j.issn.1006-0111.2012.06.008
    [15] 陈焕, 耿冬平, 李科.  N-取代苯基-2-(4-取代苯基)环丙烷-1-甲酸乙酯-1-酰胺的设计、合成及抗肿瘤活性 . 药学实践与服务, 2012, 30(6): 422-426,461. doi: 10.3969/j.issn.1006-0111.2012.06.007
    [16] 廖俊, 刘超美.  依布硒啉及衍生物的药理作用和构效关系研究进展 . 药学实践与服务, 2010, 28(2): 84-87,104.
    [17] 黄宝康, 郑汉臣, 秦路平.  缬草属植物的镇静催眠作用及机制 . 药学实践与服务, 2007, (3): 134-136,142.
    [18] 董环文, 刘超美, 何秋琴, 赵荔华.  斑蝥素及其衍生物的抗肿瘤构效关系研究进展 . 药学实践与服务, 2007, (5): 276-280.
    [19] 施利兴, 闫政.  中药有效成分对血管内皮细胞的保护作用 . 药学实践与服务, 2005, (5): 263-265.
    [20] 朱斌, 单磊, 刘荔荔, 陆峰.  近红外光谱技术及其在天然产物分析中的应用 . 药学实践与服务, 2002, (3): 176-179.
  • 加载中
计量
  • 文章访问数:  2220
  • HTML全文浏览量:  236
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11
  • 修回日期:  2013-06-25

来源于天然产物的抗肿瘤先导结构研究进展

doi: 10.3969/j.issn.1006-0111.2014.05.005
    基金项目:  国家自然科学基金重点项目(30930107).

摘要: 肿瘤严重威胁人类生命健康,因此发现新结构类型、新作用机制、更有效的抗肿瘤药成为当务之急。天然产物在抗肿瘤药物发现过程中有着重要的作用和意义。综述几种具有抗肿瘤活性的天然产物,重点阐述其作用机制、抗肿瘤活性及构效关系的研究进展。

English Abstract

武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
引用本文: 武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
Citation: WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
参考文献 (47)

目录

    /

    返回文章
    返回