留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

白色念珠菌TOR信号转导通路研究现状

梁华军 阎澜 曹永兵 姜远英 颜天华

梁华军, 阎澜, 曹永兵, 姜远英, 颜天华. 白色念珠菌TOR信号转导通路研究现状[J]. 药学实践与服务, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
引用本文: 梁华军, 阎澜, 曹永兵, 姜远英, 颜天华. 白色念珠菌TOR信号转导通路研究现状[J]. 药学实践与服务, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
LIANG Huajun, YAN Lan, CAO Yongbing, JIANG Yuanying, YAN Tianhua. Advances in TOR pathway in Candida albicans[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
Citation: LIANG Huajun, YAN Lan, CAO Yongbing, JIANG Yuanying, YAN Tianhua. Advances in TOR pathway in Candida albicans[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002

白色念珠菌TOR信号转导通路研究现状

doi: 10.3969/j.issn.1006-0111.2014.04.002
基金项目: 国家973项目(2013CB531602);国家自然科学基金资助项目(31000079);上海市基础研究重点项目(14JC1417500).

Advances in TOR pathway in Candida albicans

  • 摘要: 雷帕霉素靶(target of rapamycin,TOR)蛋白是真核细胞生长的关键调控因子,是一类进化上保守的丝氨酸/苏氨酸(Ser/Thr)蛋白激酶,属于磷脂酰肌醇相关激酶(phosphatidylinositol kinase-related kinases, PIKKs)家族。TOR信号通路通过参与调节翻译的起始和延伸,核糖体生成,蛋白质生物合成,氨基酸转运,以及多种代谢酶的转运而使细胞对外界环境刺激产生应答。在此对人类条件性致病菌白色念珠菌TOR信号通路的研究现状作一综述。
  • [1] Sehgal SN, Baker H, Vézina C. Rapamycin(AY-22,989), a new antifungal antibiotic.II. Fer-mentation, isolation and characterization[J]. J Antibiot, 1975, 28(19): 721-732.
    [2] 马 林, 万元胜, 陈东生. 他克莫司的临床应用[J]. 药物流行病学杂志, 2008, 17(1): 8-10.
    [3] Harding MW, Galat A, Uehling DE, et al. A receptor for the immuno-suppressant FK506 is a cistrans peptidyl-prolyl isomerase[J]. Nature, 1989, 341 (6244):758-760.
    [4] Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Scinece, 1991, 253(5022): 905-909.
    [5] Snydman DR. Shifting patterns in the epidemiology of nosocomial Candida infections[J]. Chest, 2003, 123(5 Supp1): 5.
    [6] 周建党, 黄 辉, 陈 颖, 等. 四年间酵母样真菌感染的病原菌分布与耐药特征分析[J]. 中国微生态学杂志. 2007, 19 (2): 202-203.
    [7] 路晓钦, 黎莉华, 周 丽, 等. 白假丝酵母菌感染分布及耐药性分析[J]. 中国感染控制杂志,2007, 6 (6): 419-421.
    [8] 吴文娟,胡绿荫,孙志华, 等. 获得性免疫缺陷综合征患者白假丝酵母分离株基因型及耐药性分析[J]. 检验医学,2007, 22(6): 684-687.
    [9] Dames SA, Mulet JM, Rathgeb-Szabo K, et al. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cel-lular stability[J]. J Biol Chem, 2005, 280(21): 20558-20564.
    [10] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484.
    [11] Rosenbach A, Dignard D, Pierce JV, et al. Adaptations of Candida albicans for growth in the mammalian Intestinal tract[J]. Eukaryot Cell, 2010, 9(7): 1075-1086.
    [12] Uhl MA, Biery M, Craiget N, et al. Haploin sufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans[J]. EMBO, 2003, 22 (11): 2668-2678.
    [13] Binda M, Péli-Gulli MP, Bonfils G, et al. The Vam6 GEF controls TORC1 by activating the EGO complex[J]. Mol Cell, 2009, 35(5): 563-573.
    [14] Zakikhany K, Naglik JR, Schmidt-Westhausen A, et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination[J]. Cell Microbiol, 2007, 9(12): 2938-2954.
    [15] Tsao CC, Chen YT, Lan CY. A small G protein Rhb1 and a GTP ase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans[J]. Fungal Genet Biol, 2009, 46(2): 126-136.
    [16] Zacchi LF, Gomez-Raja J, Davis DA. Mds3 regulates morphogenesis in Candida albicans through the TOR pathway[J]. Mol Cell Biol, 2010, 30(14): 3695-3710.
    [17] Lee CM, Nantel A, Jiang LH, et al. The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans[J]. Mol Microbol, 2004, 51(3): 691-709.
    [18] Liao WL, RamÓn AM, Fonzi WA. GLN3 encodes a global regulator of nitrogen metabolism and virulence of Candida albicans[J]. Fungal Genet Biol, 2008, 45(4): 514-526.
    [19] Huber A, Bodenmiller B, Uotila A, et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis[J]. Genes Dev, 2009, 23: 1929-1943.
    [20] Liu W, Zhao JW, Li XC, et al. The protein kinase CaSch9p is required for the cell growth, filamentation and virulence in the human fungal pathogen Candida albica[J]. FEMS Yeast Res, 2010, 10(4): 462-470.
    [21] Li H, Tsang CK, Watkins M, et al. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter[J]. Nature, 2006, 442: 1058-1061.
    [22] Strugill TW, Cohen A, Diefenbacher M, et al. TOR1 and TOR2 have distinct locations in live cells[J]. Eukaryot Cell, 2008, 7(10): 1819-1830.
    [23] Kim JE, Chen J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation[J]. PNAS, 2000, 97(26):14340-14345.
    [24] Kojic EM, Darouiche RO. Candida infections of medical devices[J]. Clin Microbiol, 2004, 17(2): 255-267.
    [25] Bastidas RJ, Heitman J, Cardenas ME. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans[J]. PLoS Pathol, 2009, 5(2): e1000294.
    [26] Tsuchimori N, Sharkey LL, Fonzi WA, et al. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells[J]. Infect Immun, 2000, 68(4): 1997-2002.
    [27] Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p[J]. Curr Biol, 2005, 15(12): 1150-1155.
    [28] Lempiäinen H, Uotila A, Urban J, et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling[J]. Mol Cell, 2009, 33(6): 704-716.
    [29] Rohde JR, Cardenas ME. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi[J]. Curr Top Microbiol, 2004, 279: 53-72.
    [30] Rohde JR, Bastidas R, Puria R, et al. Nutritional control via Tor sinaling in Saccharomyces cerevisiae[J]. Curr Opin Microbiol, 2008, 11(2): 153-160.
    [31] Zurita-Martine SA, Cardenas ME. Tor and cyclic AMP-Protein kinase A:two parallel pathways regulating expression of genes required for cell growth[J]. Eukaryot Cell, 2005, 4(1): 63-71.
    [32] Pedruzzi I, Dubouloz F, Cameroni E, et al. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0 [J]. Mol Cell, 2003, 12(6): 1607-1613.
    [33] Soulard A, Cohenl A, Hall MN. TOR signaling in invertebrates[J]. Curr Opin Cell Biol, 2009, 21(6): 825-836.
  • [1] 万立志, 王境焓, 吴春蓉, 李玲.  基于代谢组学技术的烟酰胺协同两性霉素B抑制白念珠菌的作用机制研究 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202307034
    [2] 邓忠宇, 郭士槿, 郭熠凡, 冯峻程, 吕权真, 邱丽娟.  药物联用抑制白念珠菌生长的研究进展 . 药学实践与服务, 2023, 41(6): 352-357. doi: 10.12206/j.issn.2097-2024.202112019
    [3] 徐怡澜, 阎澜.  光滑念珠菌耐药机制的研究进展 . 药学实践与服务, 2023, 41(7): 393-395, 432. doi: 10.12206/j.issn.2097-2024.202202050
    [4] 王欣荣, 鲁仁义, 王彦.  SDH2基因在白念珠菌环境适应性中的作用 . 药学实践与服务, 2022, 40(4): 309-313. doi: 10.12206/j.issn.1006-0111.202201096
    [5] 高习清, 卢光照, 鲁莹, 邹豪.  光敏ROS响应型雷帕霉素脂质体的制备及表征 . 药学实践与服务, 2022, 40(5): 437-441. doi: 10.12206/j.issn.2097-2024.202110051
    [6] 范加腾, 陆峰, 许激扬.  基于D-SERS法表征两性霉素B对白色念珠菌抑制作用的研究 . 药学实践与服务, 2019, 37(2): 156-161,169. doi: 10.3969/j.issn.1006-0111.2019.02.011
    [7] 周陈建, 赵嫏嬛, 胡国新.  帕唑帕尼在大鼠体内药动学研究 . 药学实践与服务, 2017, 35(4): 346-349. doi: 10.3969/j.issn.1006-0111.2017.04.014
    [8] 王科兵, 陈志红, 郭步, 陆国忠.  表面增强拉曼光谱法快速鉴别失活白色念珠菌 . 药学实践与服务, 2017, 35(5): 422-426. doi: 10.3969/j.issn.1006-0111.2017.05.009
    [9] 周陈建, 赵嫏嬛, 胡国新.  帕唑帕尼的临床应用和药品不良反应的研究进展 . 药学实践与服务, 2016, 34(6): 497-500. doi: 10.3969/j.issn.1006-0111.2016.06.005
    [10] 毕爽, 胡丹丹, 姜远英, 王彦.  白念珠菌的高适应性与代谢 . 药学实践与服务, 2016, 34(2): 116-118,173. doi: 10.3969/j.issn.1006-0111.2016.02.006
    [11] 张璐璐, 苗琦, 叶招浇, 李洪娇, 姜远英, 曹永兵.  不同制法纳米银的抗真菌活性研究 . 药学实践与服务, 2015, 33(4): 328-330,358. doi: 10.3969/j.issn.1006-0111.2015.04.010
    [12] 王添琦, 李祥, 李玲, 吴海棠, 徐立.  气质联用法定量分析白念珠菌中甾醇含量 . 药学实践与服务, 2013, 31(4): 277-279,320. doi: 10.3969/j.issn.1006-0111.2013.04.010
    [13] 杨丽红, 李小龙, 潘晓东, 王明山, 陈必成, 林永通.  两种免疫抑制剂对肾移植受者外周血象及红细胞生成素的影响 . 药学实践与服务, 2010, 28(1): 32-33,72.
    [14] 董玲玲, 曹颖瑛, 柴逸峰.  液质联用方法测定白色念珠菌中海藻糖的含量 . 药学实践与服务, 2010, 28(3): 186-188.
    [15] 徐进, 周恩旭, 曹颖瑛.  白色念珠菌疫苗的研究进展 . 药学实践与服务, 2008, (1): 5-6.
    [16] 武传玺.  普罗帕酮引起嗜睡1例 . 药学实践与服务, 2001, (1): 44-44.
    [17] 王茂义.  盐酸维拉帕米临床新用 . 药学实践与服务, 1991, (4): 24-25.
    [18] 孙华君, 潘珍如.  普罗帕酮的临床评价 . 药学实践与服务, 1991, (2): 17-20.
    [19] 喻维新.  雷耶氏综合征和水杨酸盐 . 药学实践与服务, 1988, (1): 67-67.
    [20] 张紫洞.  《雷氏药学大全》第16版评介 . 药学实践与服务, 1983, (1): 34-36.
  • 加载中
计量
  • 文章访问数:  2768
  • HTML全文浏览量:  228
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-23
  • 修回日期:  2013-05-20

白色念珠菌TOR信号转导通路研究现状

doi: 10.3969/j.issn.1006-0111.2014.04.002
    基金项目:  国家973项目(2013CB531602);国家自然科学基金资助项目(31000079);上海市基础研究重点项目(14JC1417500).

摘要: 雷帕霉素靶(target of rapamycin,TOR)蛋白是真核细胞生长的关键调控因子,是一类进化上保守的丝氨酸/苏氨酸(Ser/Thr)蛋白激酶,属于磷脂酰肌醇相关激酶(phosphatidylinositol kinase-related kinases, PIKKs)家族。TOR信号通路通过参与调节翻译的起始和延伸,核糖体生成,蛋白质生物合成,氨基酸转运,以及多种代谢酶的转运而使细胞对外界环境刺激产生应答。在此对人类条件性致病菌白色念珠菌TOR信号通路的研究现状作一综述。

English Abstract

梁华军, 阎澜, 曹永兵, 姜远英, 颜天华. 白色念珠菌TOR信号转导通路研究现状[J]. 药学实践与服务, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
引用本文: 梁华军, 阎澜, 曹永兵, 姜远英, 颜天华. 白色念珠菌TOR信号转导通路研究现状[J]. 药学实践与服务, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
LIANG Huajun, YAN Lan, CAO Yongbing, JIANG Yuanying, YAN Tianhua. Advances in TOR pathway in Candida albicans[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
Citation: LIANG Huajun, YAN Lan, CAO Yongbing, JIANG Yuanying, YAN Tianhua. Advances in TOR pathway in Candida albicans[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 246-249,287. doi: 10.3969/j.issn.1006-0111.2014.04.002
参考文献 (33)

目录

    /

    返回文章
    返回