留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

清蛋白作为药物载体的PEG化修饰研究进展

周琴琴 陈建明

周琴琴, 陈建明. 清蛋白作为药物载体的PEG化修饰研究进展[J]. 药学实践与服务, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
引用本文: 周琴琴, 陈建明. 清蛋白作为药物载体的PEG化修饰研究进展[J]. 药学实践与服务, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
ZHOU Qinqin, CHEN Jianming. Research advances of PEGylation modification of albumin as drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
Citation: ZHOU Qinqin, CHEN Jianming. Research advances of PEGylation modification of albumin as drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001

清蛋白作为药物载体的PEG化修饰研究进展

doi: 10.3969/j.issn.1006-0111.2014.04.001

Research advances of PEGylation modification of albumin as drug carrier

  • 摘要: 清蛋白(白蛋白)是一种理想的药物载体,但由于其在体内半衰期短以及易被酶降解等缺点限制了其应用,然而根据其具有多个修饰位点的结构特点,可通过PEG修饰延长循环时间,阻碍酶的作用等。目前,PEG修饰清蛋白仍处于研究阶段,已有较多关于PEG修饰清蛋白的研究,例如PEG修饰所起的作用、对清蛋白及其制剂的影响,以及修饰位点的选择等。本文对清蛋白的PEG化修饰的相关研究进行综述。
  • [1] Gong J, Huo M, Zhou J, et al. Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles[J].Int J Pharm, 2009,376(1-2): 161-168.
    [2] Hasan K, Seyed AS, Amir M, et al. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology[J].AAPS Pharm Sci Tech, 2010, 11(3): 1206-1211.
    [3] Zhang SF, Cezary K, Michael RD, et al. Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery[J].Biomaterials, 2010, 31(5): 952-963.
    [4] Marion GA, Mahler HC, Klaus L. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients[J].Int J Pharm, 2008, 363(1-2): 162-169.
    [5] Bitten P, Conan JF, Peter W, et al. Effects of PEG size on structure, function and stability of PEGylated BSA[J].Eur J Pharm Biopharm, 2011, 79(2): 399-405.
    [6] Zhao T, Cheng YN, Tan HN, et al. Site-specific chemical modification of human serum albumin with polyethylene glycol prolongs half-life and improves intravascular retention in mice[J].Biolog Pharm Bull, 2012, 35(3): 280-288.
    [7] Zhao T, Yang Y, Zong AZ, et al. N-terminal PEGylation of human serum albumin and investigation of its pharmacokinetics and pulmonary microvascular retention[J].Biol Sci Trends, 2012, 6(2): 81-88.
    [8] Wu L, Martin CG, Stanley SD, et al. Preparation and characterisation of rose bengal-loaded surface-modified albumin nanoparticles[J].J Contr Rel, 2011, 71(1): 117-126.
    [9] Franco D, Silvia A, Paola B, et al. Poly(ethylene glycol)-human serum albumin-paclitaxel conjugates: preparation, characterization and pharmacokinetics[J].J Contr Rel, 2001, 76(1-2): 107-117.
    [10] Pedro C, Amy GT, Ananda K. Volume resuscitation from hemorrhagic shock with albumin and hexaPEGylated human serum albumin[J].Resuscitation, 2008, 79(1): 139-146.
    [11] Moghimi SM. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers[J].Biochim Biophys Acta, 2002, 1590(1-3): 131-139.
    [12] 周 莉, 罗贵民, 高蛛娟, 等. 聚乙二醇修饰牛血请白蛋白[J].吉林大学自然科学学报,1997, (4): 63-66.
    [13] Jesse VJ, Tatsiana L, Richard NZ, et al. Nanoparticle PEGylation for imaging and therapy[J].Nanomedicine, 2001, 6(4): 715-728.
    [14] Wu L, Martin CG, Etienne S, et al. Preparation and in vitro characterization of HSA-mPEG nanoparticles[J].Int J Pharm, 1999, 189(2): 161-170.
    [15] 孙诚谊, 刘建刚, 钱志勇, 等. 聚乙二醇修饰与未修饰磁性5-氟尿嘧啶白蛋白微球体外性质的比较[J].消化肿瘤杂志, 2008, 1(2): 110-113.
    [16] Beatriz F, Bibiana N, Hernan DN, et al. Thermal features of the bovine serum albumin unfolding by polyethylene glycols[J].Int J Biol Macromol, 1999, 26(1): 23-33.
    [17] Gianfranco P, Francesco MV. State of the art in PEGylation: the great versatility achieved after forty years of research[J].J Contr Rel, 2012, 161(2): 461-472.
    [18] 徐 超. 聚乙二醇修饰人血清白蛋白及其纳米微球制备[D]. 合肥工业大学, 2007.
    [19] Liu W, Zhang ZQ, Liu CM, et al. Effect of molecular patch modification on the stability of dynamic high-pressure microfluidization treated trypsin[J].Innov Food Sci Emerg Tech, 2012, 16: 349-354.
    [20] Hou BB, Li SR, Li XH, et al. Design, preparation and in vitro bioactivity of mono-PEGylated recombinant hirudin[J].Chin J Chem Eng, 2007, 15(6): 775-780.
    [21] Veronese FM. Introduction and overview of peptide and protein PEGylation: a review of problems and solution[J].Biomaterials,2001, 22(5): 405-417.
    [22] Hu JL, Walter S. N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH[J].Int J Pharm, 2011, 413(1-2): 140-146.
    [23] Stewart AJ, Blindauer CA, Berezenko S, et al. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin[J].FEBS J, 2005, 272(2): 353-362.
    [24] Octaaf JMB, Jan FAL, Marcel JEF, et al. The molecular mechanism of the neutral-to-base transition of human serum albumin[J].J Biol Chem, 1989, 264(2): 953-959.
    [25] Kim SH, Jeong JH, Joe CO, et al. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate[J].J Contr Rel, 2005,103: 625-634.
    [26] 袁 飞, 王树斌, 彭志平, 等. 表皮生长因子受体靶向纳米载体荷载c-erbB2反义寡脱氧核苷酸对人乳腺癌SK-BR3细胞的摄取和滞留[J].中国组织工程研究与临床康复, 2009,13(16): 3084-3088.
    [27] Choi N, Kim SM, Hong KS, et al. The use of the fusion protein RGD-HSA-TIMP2 as a tumor targeting imaging[J].Biomaterials, 2011, 32: 7151-7158.
    [28] Parikh T, Bommana MM, Squillante E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain[J].Eur J Pharm Biopharm, 2010, 74: 442-450.
    [29] Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons[J].J Contr Rel, 2009, 137: 78-86.
    [30] Kreuter J, Hekmatara T, Dreis S, et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain[J].J Contr Rel, 2007, 118: 54-58.
    [31] Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin and transferrin-receptor-antibody modified nanoparticles enable drug delivery across the blood-brain barrier(BBB)[J]. Eur J Pharm Biopharm, 2009, 71: 251-256.
  • [1] 王琳召, 乐李敬, 康安锋, 佘岚, 王欢, 马志强, 杨峰.  PVP和PEG表面修饰对有序介孔碳纳米粒分散性及细胞毒性的影响 . 药学实践与服务, 2016, 34(2): 158-162. doi: 10.3969/j.issn.1006-0111.2016.02.015
    [2] 李文清, 邹豪, 钟延强.  肿瘤靶向纳米递释系统存在问题的分析 . 药学实践与服务, 2015, 33(2): 106-109,170. doi: 10.3969/j.issn.1006-0111.2015.02.003
    [3] 李唯, 周峰, 郑灿辉, 周有骏.  结合微管蛋白位点的小分子血管阻断剂的研究进展 . 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
    [4] 高静, 储藏, 丁雪鹰, 高申, 鲁莹, 钟延强, 陈建明, 徐爱民.  药剂学教学改革中应用PBL教学法的初步探索 . 药学实践与服务, 2009, 27(3): 231-232,235.
    [5] 钟延强, 李国栋, 鲁莹, 陈琰, 邓莉, 高静.  讨论式授课在药剂学教学方法改革中的尝试与体会 . 药学实践与服务, 2006, (5): 307-308.
    [6] 吴磊, 侯雪梅, 李国栋.  三个厂家水溶性维生素粉针剂药剂学评价 . 药学实践与服务, 2006, (2): 89-92.
    [7] 王秀冬, 高申.  超临界流体沉积技术在药剂学中的应用 . 药学实践与服务, 2003, (4): 195-198.
    [8] 汪国华, 张文惠, 陈剑.  丹皮酚复乳的药剂学研究 . 药学实践与服务, 2003, (6): 373-374.
    [9] 鲁莹, 陈琰, 高申, 钟延强.  改进生物药剂学教学的几点体会 . 药学实践与服务, 2003, (2): 98-99.
    [10] 顾丽红, 陈志东.  尼古丁缓释片的制备及药剂学研究 . 药学实践与服务, 2001, (5): 288-289.
    [11] 张万国, 胡晋红, 蔡溱.  四氯化碳致大鼠肝纤维化模型血液流变学性质的研究 . 药学实践与服务, 2001, (2): 78-79.
    [12] 孙伟张, 曾仁杰, 刘明蓉, 景利, 张勤.  盐酸异丙嗪干糖浆的制备及生物药剂学评价 . 药学实践与服务, 1998, (3): 161-162.
    [13] 景利, 孙伟张, 曾仁杰, 黄劲, 王建标.  吲哚美辛锌栓在家兔体内的生物药剂学评价 . 药学实践与服务, 1994, (2): 45-47.
    [14] 朱建英.  清栓酶治疗脑血栓病的注意点 . 药学实践与服务, 1989, (4): 39-40.
    [15] RobertE.Notari.  生物药剂学的基本概念(四) . 药学实践与服务, 1984, (2): 75-77.
    [16] WalterSinger.  生物药剂学自学试题解答(下) . 药学实践与服务, 1984, (3): 71-74.
    [17] WalterSinger.  生物药剂学自学试题解答(上) . 药学实践与服务, 1984, (2): 69-72.
    [18] RobertE.Notari.  生物药剂学的基本概念(三) . 药学实践与服务, 1984, (1): 67-70.
    [19] RobertE.Notari.  生物药剂学的基本概念(一) . 药学实践与服务, 1983, (2): 70-77.
    [20] RobertE.Notari.  生物药剂学的基本概念(二) . 药学实践与服务, 1983, (3): 68-73,57.
  • 加载中
计量
  • 文章访问数:  2399
  • HTML全文浏览量:  176
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-11
  • 修回日期:  2013-12-25

清蛋白作为药物载体的PEG化修饰研究进展

doi: 10.3969/j.issn.1006-0111.2014.04.001

摘要: 清蛋白(白蛋白)是一种理想的药物载体,但由于其在体内半衰期短以及易被酶降解等缺点限制了其应用,然而根据其具有多个修饰位点的结构特点,可通过PEG修饰延长循环时间,阻碍酶的作用等。目前,PEG修饰清蛋白仍处于研究阶段,已有较多关于PEG修饰清蛋白的研究,例如PEG修饰所起的作用、对清蛋白及其制剂的影响,以及修饰位点的选择等。本文对清蛋白的PEG化修饰的相关研究进行综述。

English Abstract

周琴琴, 陈建明. 清蛋白作为药物载体的PEG化修饰研究进展[J]. 药学实践与服务, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
引用本文: 周琴琴, 陈建明. 清蛋白作为药物载体的PEG化修饰研究进展[J]. 药学实践与服务, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
ZHOU Qinqin, CHEN Jianming. Research advances of PEGylation modification of albumin as drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
Citation: ZHOU Qinqin, CHEN Jianming. Research advances of PEGylation modification of albumin as drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(4): 241-245,265. doi: 10.3969/j.issn.1006-0111.2014.04.001
参考文献 (31)

目录

    /

    返回文章
    返回