留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

结合微管蛋白位点的小分子血管阻断剂的研究进展

李唯 周峰 郑灿辉 周有骏

李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
引用本文: 李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
Citation: LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001

结合微管蛋白位点的小分子血管阻断剂的研究进展

doi: 10.3969/j.issn.1006-0111.2013.06.001
基金项目: 国家自然科学基金(21172260);上海市基础研究重点课题(09JC1417500).

Progress on microtubulin-site vascular disruption agents

  • 摘要: 血管阻断剂(vascular disrupting agents,VDAs)是能选择性损伤肿瘤相关血管的一类抗肿瘤药物。这类药物通过选择性地破坏肿瘤相关血管,阻断肿瘤组织的氧气和营养物质供应,造成继发的肿瘤细胞死亡,从而达到靶向治疗肿瘤的目的。目前已有10多个作用于微管蛋白的血管阻断剂进入临床研究,显示出良好的开发应用前景。本文对目前进入临床研究的VDAs进行综述。
  • [1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. Cancer J Clin, 2011, 61(2):69.
    [2] He X, Li S, Huang H, et al. A pharmacokinetic and safety study of single dose intravenous combretastatin A4 phosphate in Chinese patients with refractory solid tumours[J]. Br J Clin Pharmacol, 2011, 71(6):860.
    [3] Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels[J]. Nat Rev Cancer, 2005, 5(6):423.
    [4] Pettit GR, Temple C Jr, Narayanan VL, et al. Antineoplastic agents 322. Synthesis of combretastatin A-4 prodrugs[J]. Anticancer Drug Des, 1995, 10(4):299.
    [5] Ding XQ, Zhang ZQ, Li S, et al. Combretastatin A-4 phosphate induces programmed cell death in vascular endothelial cells[J]. Oncol Res, 2011, 19(7):303.
    [6] Nathan P, Zweifel M, Padhani AR, et al. Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer[J]. Clin Cancer Res, 2012, 18(12):3428.
    [7] Delmonte A, Sessa C. AVE8062:a new combretastatin derivative vascular disrupting agent[J]. Expert Opin Invest Drugs, 2009, 18(10):1541.
    [8] Hori K. Antineoplastic strategy:irreversible tumor blood flow stasis induced by the combretastatin A-4 derivative AVE8062 (AC7700)[J]. Chemotherapy, 2005, 51(6):357.
    [9] Nihei Y, Suga Y, Morinaga Y, et al. A novel combretastatin A-4 derivative, AC-7700, shows marked antitumor activity against advanced solid tumors and orthotopically transplanted tumors[J]. Jpn J Cancer Res, 1999, 90(9):1016.
    [10] Clémenson C, Jouannot E, Merino-Trigo A, et al. The vascular disrupting agent ombrabulin (AVE8062) enhances the efficacy of standard therapies in head and neck squamous cell carcinoma xenograft models[J]. Invest New Drugs, 2013, 31(2):273.
    [11] Sessa C, Soria JC, Tolcher A, et al. A phase I pharmacokinetic and pharmacodynamic study of AVE8062, a novel vascular disrupting agent, in patients (PTS) with advanced solid tumors-preliminary results[J]. Ann Oncol, 2009, 20:24.
    [12] Morinaga Y, Suga Y, Ehara S, et al. Combination effect of AC-7700, a novel combretastatin A-4 derivative, and cisplatin against murine and human tumors in vivo[J]. Cancer Sci, 2003, 94(2):200.
    [13] Salmon HW, Siemann DW. Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity[J]. Clin Cancer Res, 2006, 12(13):4090.
    [14] Rice L, Pampo C, Lepler S, et al. Support of a free radical mechanism for enhanced antitumor efficacy of the microtubule disruptor OXi4503[J]. Microvasc Res, 2011, 81(1):44.
    [15] Folkes LK, Christlieb M, Madej E, et al. Oxidative metabolism of combretastatin A-1 producesquinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals[J]. Chem Res Toxicol, 2007, 20(12):1885.
    [16] Sheng Y, Hua J, Pinney KG, et al. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis[J]. Int J Cancer, 2004, 111(4):604.
    [17] Cummings J, Zweifel M, Smith N, et al. Evaluation of cell death mechanisms induced by the vascular disrupting agent OXi4503 during a phase I clinical trial[J]. Br J Cancer, 2012, 106(11):1766.
    [18] Wankhede M, Dedeugd C, Siemann DW, et al. In vivo functional differences in microvascular response of 4T1 and Caki-1 tumors after treatment with OXi4503[J]. Oncol Rep, 2010, 23(3):685.
    [19] Mckeage MJ, Baguley BC. Disrupting established tumor blood vessels:an emerging therapeutic strategy for cancer[J]. Cancer, 2010, 116(8):1859.
    [20] Patterson DM, Zweifel M, Middleton MR, et al. Phase I clinical and pharmacokinetic evaluation of the vascular-disrupting agent OXi4503 in patients with advanced solid tumors[J]. Clin Cancer Res, 2012, 18(5):1415.
    [21] Madlambayan GJ, Meacham AM, Hosaka K, et al. Leukemia regression by vascular disruption and antiangiogenic therapy[J]. Blood, 2010, 116(9):1539.
    [22] Flynn BL, Gill GS, Grobelny DW, et al. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties[J]. J Med Chem, 2011, 54(17):6014.
    [23] Kremmidiotis G, Leske AF, Lavranos TC, et al. BNC105:a novel tubulin polymerization inhibitor that selectively disrupts tumor vasculature and displays single-agent antitumor efficacy[J]. Mol Cancer Ther, 2010, 9(6):1562.
    [24] Rischin D, Bibby DC, Chong G, et al. Clinical, pharmacodynamic, and pharmacokinetic evaluation of BNC105P:a phase I trial of a novel vascular disrupting agent and inhibitor of cancer cell proliferation[J]. Clin Cancer Res, 2011, 17(15):5152.
    [25] Sirisoma N, Kasibhatla S, Pervin A, et al. Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity[J]. J Med Chem, 2008, 51(15):4771.
    [26] Sirisoma N, Pervin A, Zhang H, et al. Discovery of N-(4-methoxyphenyl)-N,2-dimethylquinazolin-4-amine, a potent apoptosis inducer and efficacious anticancer agent with high blood brain barrier penetration[J]. J Med Chem, 2009, 52(8):2341.
    [27] Kasibhatla S, Baichwal V, Cai SX, et al. MPC-6827:a small-molecule inhibitor of microtubuleformation that is not a substrate for multidrug resistance pumps[J]. Cancer Res, 2007, 67(12):5865.
    [28] Tsimberidou AM, Akerley W, Schabel MC, et al. Phase I clinical trial of MPC-6827(Azixa), a microtubule destabilizing agent, in patients with advanced cancer[J]. Mol Cancer Ther, 2010, 9(12):3410.
    [29] Kemnitzer W, Drewe J, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group[J]. J Med Chem, 2004, 47(25):6299.
    [30] Kemnitzer W, Kasibhatla S, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7-and 5-, 6-, 8-positions[J]. Bioorg Med Chem Lett, 2005, 15(21):4745.
    [31] Read WL, Rosen P, Lee P, et al. Pharmacokinetic and pharmacodynamic results of a 4-hr iv administration phase I study with EPC2407, a novel vascular disrupting agent[J]. J Clin Oncol,2009, 27(15Suppl):3569.
    [32] Fox E, Maris JM, Widemann BC, et al. A phase I study of ABT-751, an orally bioavailable tubulin inhibitor, administered daily for 21 days every 28 days in pediatric patients with solid tumors[J]. Clin Cancer Res, 2008, 14(4):1111.
    [33] Burns CJ, Fantino E, Phillips ID, et al. CYT997:a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity in vitro and in vivo[J]. Mol Cancer Ther, 2009, 8(11):3036.
    [34] Burge M, Francesconi A, Kotasek D, et al. Phase I, pharmacokinetic and pharmacodynamic evaluation of CYT997, an orally-bioavailable cytotoxic and vascular-disrupting agent[J]. Invest New Drugs, 2012, 31(1):126.
  • [1] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202306040
    [2] 沈洁, 黄飞, 张星杰, 姚建忠.  双模抗肿瘤光敏剂二氢卟吩e6-偕氟尿嘧啶的合成和生物活性 . 药学实践与服务, 2024, 42(1): 18-23. doi: 10.12206/j.issn.2097-2024.202306030
    [3] 王敏, 周苏萍, 张帅, 王伯阳, 储藏.  注射剂常用包装形式研究使用进展 . 药学实践与服务, 2023, 41(9): 528-533, 571. doi: 10.12206/j.issn.2097-2024.202204103
    [4] 周容睿, 魏艳平, 陈威, 丁倩倩, 王金鑫, 祖先鹏.  补骨脂二氢黄酮甲醚的药理活性及肝毒性研究进展 . 药学实践与服务, 2023, 41(8): 465-471. doi: 10.12206/j.issn.2097-2024.202204031
    [5] 温萍, 张俊平.  隐丹参酮及其衍生物抗肿瘤活性研究进展 . 药学实践与服务, 2023, 41(4): 207-211. doi: 10.12206/j.issn.2097-2024.202208090
    [6] 戴佳炜, 施赛健, 宋瑷蔚, 王志斌, 庄春林, 夏春年.  吲哚查尔酮衍生物FC58的抗白血病多药耐药活性研究 . 药学实践与服务, 2021, 39(4): 305-308. doi: 10.12206/j.issn.1006-0111.202012008
    [7] 董家潇, 金永生, 曹莺.  黄芩素抗肿瘤作用及其机制研究新进展 . 药学实践与服务, 2021, 39(1): 9-12, 43. doi: 10.12206/j.issn.1006-0111.202004030
    [8] 马福家, 孟志, 张星杰, 王媛, 马志强, 姚建忠.  二氢卟吩p6醚类光敏剂的合成及光动力抗癌活性研究 . 药学实践与服务, 2020, 38(1): 52-56. doi: 10.3969/j.issn.1006-0111.201907017
    [9] 程丹, 许幼发, 傅志勤, 陈建明.  靶向肿瘤微环境的紫杉醇前药研究进展 . 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
    [10] 施赛健, 张文, 厉廷有, 庄春林.  抗肿瘤多药耐药微管蛋白调节剂的研究进展 . 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
    [11] 张悦, 王静, 李铁军.  海带多糖抗肿瘤活性研究进展 . 药学实践与服务, 2016, 34(5): 393-395,473. doi: 10.3969/j.issn.1006-0111.2016.05.003
    [12] 苏瑞强, 李晏, 彭坤, 李洁, 杨全, 杨献文.  海洋拟诺卡菌SCSIO 11492中次生代谢产物的分离及其抗肿瘤活性研究 . 药学实践与服务, 2015, 33(5): 406-410. doi: 10.3969/j.issn.1006-0111.2015.05.006
    [13] 张涛, 王甜甜, 张一凯, 牛春娟, 李令振, 李科.  2-(4-三氟甲基苯基)-4-乙基-呋喃-3-酰胺衍生物的设计、合成及其抗肿瘤活性研究 . 药学实践与服务, 2014, 32(2): 98-101,120. doi: 10.3969/j.issn.1006-0111.2014.02.006
    [14] 孙囡囡, 刘嘉, 郑灿辉, 周有骏.  新型四氢-2-萘醇类化合物的合成、晶体结构及抗肿瘤活性 . 药学实践与服务, 2014, 32(3): 191-194. doi: 10.3969/j.issn.1006-0111.2014.03.007
    [15] 王园园, 王鑫, 王义善.  瑞香狼毒提取物尼地吗啉的抗肿瘤研究概况 . 药学实践与服务, 2011, 29(5): 328-330,335.
    [16] 廖洪利, 苏春丽, 王伟新, 杨倩.  抗肿瘤青蒿素衍生物的研究 . 药学实践与服务, 2009, 27(2): 84-86.
    [17] 董环文, 刘超美, 何秋琴, 赵荔华.  斑蝥素及其衍生物的合成及结构修饰的研究进展 . 药学实践与服务, 2008, (2): 97-102.
    [18] 刘桂萍.  冬虫夏草多糖测定方法的研究进展 . 药学实践与服务, 2008, (1): 53-54,68.
    [19] 董环文, 刘超美, 何秋琴, 赵荔华.  斑蝥素及其衍生物的抗肿瘤构效关系研究进展 . 药学实践与服务, 2007, (5): 276-280.
    [20] 王昌林, 周月芬, 李昱.  喜树碱类抗肿瘤药物研究概况 . 药学实践与服务, 2001, (3): 172-174.
  • 加载中
计量
  • 文章访问数:  2321
  • HTML全文浏览量:  255
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-07
  • 修回日期:  2013-04-01

结合微管蛋白位点的小分子血管阻断剂的研究进展

doi: 10.3969/j.issn.1006-0111.2013.06.001
    基金项目:  国家自然科学基金(21172260);上海市基础研究重点课题(09JC1417500).

摘要: 血管阻断剂(vascular disrupting agents,VDAs)是能选择性损伤肿瘤相关血管的一类抗肿瘤药物。这类药物通过选择性地破坏肿瘤相关血管,阻断肿瘤组织的氧气和营养物质供应,造成继发的肿瘤细胞死亡,从而达到靶向治疗肿瘤的目的。目前已有10多个作用于微管蛋白的血管阻断剂进入临床研究,显示出良好的开发应用前景。本文对目前进入临床研究的VDAs进行综述。

English Abstract

李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
引用本文: 李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
Citation: LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
参考文献 (34)

目录

    /

    返回文章
    返回