留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展

吴韫韬 张依依

吴韫韬, 张依依. 聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展[J]. 药学实践与服务, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
引用本文: 吴韫韬, 张依依. 聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展[J]. 药学实践与服务, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
WU Yun-tao, ZHANG Yi-yi. Advances in polymeric micelles for drug delivery and tumor targeting[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
Citation: WU Yun-tao, ZHANG Yi-yi. Advances in polymeric micelles for drug delivery and tumor targeting[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002

聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展

doi: 10.3969/j.issn.1006-0111.2013.02.002

Advances in polymeric micelles for drug delivery and tumor targeting

  • 摘要: 聚合物胶束具有粒径小、稳定性高、滞留时间长、良好的生物相容性等特点,这些优良性质使得聚合物胶束作为药物载体具有许多独特的优势。近年来,涌现了许多围绕聚合物胶束设计肿瘤靶向给药系统的报道,包括利用肿瘤的病理学性质,设计被动靶向给药系统和对聚合物胶束进行表面修饰,设计主动靶向给药系统。本文主要综述了聚合物胶束作为肿瘤靶向药物载体的研究进展。
  • [1] Wang L, Zeng R, Li C, et al. Self-assembled polypeptide-block-poly (vinylpyrrolidone) as prospective drug-delivery systems[J]. Colloids and Surfaces B:Biointerfaces, 2009, 74:284.
    [2] Yokoyama M, Okano T, Sakurai Y, et al. Introduction of cisplatin into polymeric micelles[J]. J Control Release, 1996, 39:351.
    [3] Shen Y, Jiasheng T. Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery[J]. Carbohydrate Polym, 2009, 77:95.
    [4] Rijcken CJ, Snel CJ, Schiffelers RM, et al. Hydrolysable core-crosslinked thermosensitive polymeric micelles:synthesis, characterisation and in vivo studies[J]. Biomaterials, 2007, 28:5581.
    [5] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv Drug Deliv Rev, 2003, 55:403.
    [6] Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46:3.
    [7] Zhang Z, Grijpma DW, Feijen J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles[J]. J Control Release, 2006, 112:57.
    [8] Li Y, Kwon GS. Methotrexate esters of poly(ethyleneoxide)-blockpoly(2-hydroxyethyl-L-aspartamide). I Effects of the level of methotrexate conjugation on the stability of micelles and on drug release[J]. Pharm Res, 2000, 17:607.
    [9] Kozlov MY, Melik-Nubarov NS, Batrakova EV, et al. Relationship between Pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes[J]. Macromolecules, 2000, 33:3305.
    [10] Lavasanifar A, Samuel J, Kwon GS. The effect of alkyl core structure on micellar properties of poly(ethylene oxide)-block-poly(Laspartamide) derivatives[J]. Colloids Surfaces B Biointerfaces, 2001, 22:115.
    [11] Lee ES, Na K, Bae YH. Polymeric micelles for tumor pH and folate mediated targeting[J]. J Control Release, 2003, 91:103.
    [12] Lee ES, Na K, Bae YH, et al. Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization[J]. J Control Release, 2003, 90:363.
    [13] Rejinold NS, Muthunarayanan M, Divyarani VV, et al. Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery[J]. J Colloid Interface Sci, 2011, 360:39.
    [14] Rejinold NS, Sreerekha PR, Chennazhi KP, et al. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery[J]. Int J Biol Macromol, 2011, 49:161.
    [15] Kim JH, Emoto K, Iijima M, et al. Core-stabilized polymeric micelle as potential drug carrier:increased solubilization of taxol[J]. Polym Adv Technol, 1999, 10:647.
    [16] Butsele KV, Sibreta P, Fustin CA, et al. Synthesis and pH-dependent micellization of diblock copolymer mixtures[J]. J Colloid Interf Sci, 2009, 329:235.
    [17] Patil YB, Toti US, Khdair A, et al. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery[J]. Biomaterials, 2009, 30:859.
    [18] Taillefer J, Jones MC, Brasseur N, et al. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs[J]. J Pharm Sci, 2000, 89:52.
    [19] Der ZL, Jui HH, Xian CF, et al. Synthesis, characterization and drug delivery behaviors of new PCP polymeric micelles[J]. Carbohydrate Polym, 2007, 68:544.
    [20] Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery[J]. J Pharm Sci, 2003, 92:1343.
    [21] Yunhai L, Xiaohong C, Mingbiao L, et al. Selfassembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release[J]. J Colloid Interf Sci, 2009, 329:244.
    [22] Wilhelm M, Zhao CL, Wang YC, et al. Poly(styrene-ethylene oxide) block copolymer micelle formation in water:a fluorescence probe study[J]. Macromolecules, 1991, 24:1033.
    [23] Chen Y, Sone M, Fuchise K, et al. Structural effect of a series of block copolymers consisting of poly(Nisopropylacrylamide and poly(N-hydroxyethylacrylamide) on thermoresponsiv behavior[J]. React Funct Polym, 2009, 69:463.
    [24] Cho YW, Lee J, Lee SC, et al. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles[J]. J Control Release, 2004, 97:249.
    [25] Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature, the key role of tumor selective macromolecular drug targeting[J]. Adv Enzyme Regul, 2001, 41:189.
    [26] Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect[J]. Adv Drug Deliv Rev, 2011, 63:170.
    [27] Torchillin VP, Iakaubov LZ, Estrov Z. Therapeutic potential of antinuclear autoantibodies in cancer[J]. Cancer Ther, 2003, 1:179.
    [28] Knock E, Deng L, Krupenko N, et al. Susceptibility to intestinal tumorigenesis in folate-deficient mice may be influenced by variation in one-carbon metabolism and DNA repair[J]. J Nutr Biochem, 2011, 22:1022.
    [29] Hageluken A, Grunbaum L, Numberg B, et al. Lipophilic beta-adrenoceptor antagonist and local anaesthetics are effective direct activators of G-proteins[J]. Biochem Pharmacol, 1994, 47:1789.
    [30] Dharap SS, Qiu B, Williams GC, et al. Molecular targeting of drug delivery systems to ovarian cancers by BH3 and LHRH peptides[J]. J Control Release, 2003, 91:61.
    [31] Lee AL, Yong W, Cheng HY, et al. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles[J]. Biomaterials, 2009, 30:919.
    [32] Rijcken CJ, Snel CJ, Schiffelers RM, et al. Hydrolysable core-crosslinked thermosensitive polymeric micelles:synthesis, characterisation and in vivo studies[J]. Biomaterials, 2007, 28:5581.
    [33] Mannaris C, Averkiou MA. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery[J]. Ultrasound Med Biol, 2012, 38:681.
    [34] Wei A, Zhou D, Ruan J, et al. Anti-tumor and anti-angiogenic effects of Macrothelypteris viridifrons and its constituents by HPLC-DAD/MS analysis[J]. J Ethnopharmacol, 2012, 139:373.
  • [1] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(7): 1-7. doi: 10.12206/j.issn.2097-2024.202303023
    [2] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [3] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [4] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
  • 加载中
计量
  • 文章访问数:  2343
  • HTML全文浏览量:  246
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-05
  • 修回日期:  2012-10-09

聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展

doi: 10.3969/j.issn.1006-0111.2013.02.002

摘要: 聚合物胶束具有粒径小、稳定性高、滞留时间长、良好的生物相容性等特点,这些优良性质使得聚合物胶束作为药物载体具有许多独特的优势。近年来,涌现了许多围绕聚合物胶束设计肿瘤靶向给药系统的报道,包括利用肿瘤的病理学性质,设计被动靶向给药系统和对聚合物胶束进行表面修饰,设计主动靶向给药系统。本文主要综述了聚合物胶束作为肿瘤靶向药物载体的研究进展。

English Abstract

吴韫韬, 张依依. 聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展[J]. 药学实践与服务, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
引用本文: 吴韫韬, 张依依. 聚合物胶束作为药物载体及其在肿瘤靶向方面的研究进展[J]. 药学实践与服务, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
WU Yun-tao, ZHANG Yi-yi. Advances in polymeric micelles for drug delivery and tumor targeting[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
Citation: WU Yun-tao, ZHANG Yi-yi. Advances in polymeric micelles for drug delivery and tumor targeting[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(2): 86-89,115. doi: 10.3969/j.issn.1006-0111.2013.02.002
参考文献 (34)

目录

    /

    返回文章
    返回