留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

蛋白质结晶的新进展与药物设计

陈维敬 仲维清

陈维敬, 仲维清. 蛋白质结晶的新进展与药物设计[J]. 药学实践与服务, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
引用本文: 陈维敬, 仲维清. 蛋白质结晶的新进展与药物设计[J]. 药学实践与服务, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
CHEN Wei-jing, ZHONG Wei-qing. New progress of protein crystallization and drug design[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
Citation: CHEN Wei-jing, ZHONG Wei-qing. New progress of protein crystallization and drug design[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001

蛋白质结晶的新进展与药物设计

doi: 10.3969/j.issn.1006-0111.2012.02.001
基金项目: 国家自然科学基金资助项目(20371050).

New progress of protein crystallization and drug design

  • 摘要: 蛋白质是生命的基础,其功能与它的三维结构密切相关,关于蛋白质的结构信息,对科学家根据结构同源性确定药物靶标以及发现新的药物靶标等方面均有至关重要的作用。因此,蛋白质晶体的获得及其与药物设计的关系日益受到重视,已成为生命科学中的一个重要领域,本文主要综述了蛋白质结晶技术的最新研究进展以及在药物设计中的应用。
  • [1] Pastwa E,Somiari SB, Czyz M, et al. Proteomics in human cancer research[J]. Proteom Clin Appl, 2007, 1(1): 4.
    [2] Curcio E, Simone S, Gianluca DP. et al. Memabrane crystallization of lysozyme under forced solution flow[J]. J Membrane Sci, 2005, 257(1-2): 134.
    [3] Zhang XM, Wei KG, Ma RY, et al. Precipitants and additives for membrane crystallization of lysozyme[J]. Biotechnol J, 2006, 1(11): 1302.
    [4] Zhang XM, Zhang P, Ma RY, et al. The study of continuous membrane crystallization on lysozyme[J]. Desalination, 2008, 219(1-3):101.
    [5] 庞鸿宇, 刘丽英, 马润宇, 等. 木瓜蛋白酶动态膜结晶的实验研究[J]. 膜科学与技术, 2010, 30(1): 30.
    [6] Xiao T, Takag J, Wang JH, et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics[J]. Nature, 2004, 432(7013): 59.
    [7] 李俊君, 陈 强, 李 刚, 等. 微流控技术应用于蛋白质结晶的研究[J]. 化学进展, 2009, 21(5): 1034.
    [8] 马建华, 仓怀兴. 空间蛋白质晶体生长新技术[J]. 生物物理学报, 2009, 25(s1):: 314.
    [9] Koide S. Engineering of recombinant crystallization chaperones[J]. Curr Opin Struct Biol, 2009, 19(4): 449.
    [10] Day PW, Rasmussen SG, Parnot C, et al. A monoclonal antibody for G protein-coupled receptor crystallography[J]. Nat Methods, 2007, 4(11): 927.
    [11] Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor[J]. Nature, 2007, 450(7168): 383.
    [12] Korotkov KV, Pardon E, Steyaert J, et al. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody[J]. Structure, 2009, 17(2): 255.
    [13] Lam AY, Pardon E, Korotkov KV, et al. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus[J]. J Struct Biol, 2009, 166(1): 8.
    [14] Uysal S, Vasquez V, Tereshko V, et al. The crystal structure of fulllength KcsA in its closed conformation[J]. Proc Natl Acad Sci USA, 2009, 106(16): 6644.
    [15] Sennhauser G, Grutter MG. Chaperone-assisted crystallography with DARPins[J]. Structure, 2008, 16(10): 1443.
    [16] Mio K, Maruyama Y, Ogura T, et al. Single particle reconstruction of membrane proteins: A tool for understanding the 3D structure of disease-related macromolecules[J]. Progress Biophys Mol Biol, 2010, 103(1): 122.
    [17] Fujiyoshi Y. Structural physiology based on electron crystallography[J]. Protein Sci, 2011, 20(5): 806.
    [18] Bill RM, Henderson PJF, Iwata S, et al. Overcoming barriers to membrane protein structure determination[J]. Nat Biotech, 2011, 29(4): 335.
    [19] Leulliot N, Tresaugues L, Bremang M, et al. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics project: one size fits all[J]. Acta Crystallogr D, 2005, 61(6): 664.
    [20] Kambach C. Pipelines, robots, crystals and biology: What use high throughput solving structures of challenging targets[J]. Curr Protein Pept Sci, 2007, 8(2): 205.
    [21] Luft JR, Snell EH, DeTitta GT. Lessons from high-throughput protein crystallization screening: 10 years of practical experience[J]. Expert Opin Drug Discov, 2011, 6(5): 465.
    [22] Leach AR, Gillet VJ, Lewis RA, et al. Three-dimensional pharmacophore methods in drug discovery[J]. J Med Chem, 2010, 53(2): 539.
    [23] Scapin G. Structural biology and drug discovery[J]. Curr Pharm Des, 2006, 12(17): 2087.
    [24] Arinaminpathy Y, Khurana E, Engelman DM, et al. Computational analysis of membrane proteins: the largest class of drug targets[J]. Drug Discov Today, 2009, 14(23-24): 1130.
    [25] Grey J, Thompson D. Challenges and opportunities for new protein crystallization strategies in structure-based drug design[J]. Expert Opin Drug Discov, 2010, 5(11): 1039.
    [26] 甘 淋, 刘银坤. Stathm in蛋白:一个潜在的肿瘤标志物[J]. 肿瘤, 2010, 30(1): 73.
    [27] Tabernero L, Aricescu AR, Jones EY, et al. Protein tyrosine phosphatases: structure-function relationships[J]. FEBS J, 2008, 275(5): 867.
    [28] Chrysina ED, Chajistamatiou A, Chegkazi M. From structure-based to knowledge-based drug design through x-ray protein crystallography: sketching glycogen phosphorylase binding sites[J]. Curr Med Chem, 2011, 18(17): 2620.
    [29] Rosano C, Stec-Martyna E, Lappano R. Structure-based approach for the discovery of novel selective estrogen receptor modulators[J]. Curr Med Chem, 2011, 18(8): 1188.
    [30] Morrow JK, Lei DC, Lu C, et al. Recent development of anticancer therapeutics targeting Akt[J]. Rec Pat Anti-Cancer Drug Dis, 2011, 6(1): 146.
    [31] Munikumar RD, Dhanaji AT, Seon HS, et al. Structure based design of heat shock protein 90 inhibitors acting as anticancer agents[J]. Bioorg Med Chem, 2011,19(5): 1714.
    [32] Yuan YX, Pe JF, Lai LH. LigBuilder 2: A practical de novo drug design approach[J]. J Chem Inf Model, 2011, 51(5): 1083.
    [33] Bon RS, Zhong G, Anouk Stigter E, et al. Structure-guided development of selective rabggtase inhibitors[J]. Angew Chem Int Ed, 2011, 50(21): 4957.
    [34] Mai D, Jones J, Rodgers JW, et al. A Screen to Identify Small Molecule Inhibitors of Protein-Protein Interactions in Mycobacteria[J]. ASSAY Drug Dev Tech. 2011, 9(3):299.
    [35] Madabushi S, Yao H, Marsh M, et al. Structural clusters of evolutionary trace residues are statistically significant and common in proteins[J], J Mol Biol, 2002, 316(1): 139.
    [36] Song YL, Qi YP, Zhang WN, et al. Evolutionary trace analysis of eukaryotic DNA topoisomerase I superfamily: Identification of novel antitumor drug binding site[J]. Sci China Ser C, 2005, 28(4): 375.
    [37] Sheng CQ, Dong GQ, Che XY, et al. Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design[J]. J Mol Mod, 2010, 16(2): 279.
  • [1] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(7): 1-7. doi: 10.12206/j.issn.2097-2024.202303023
    [2] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
  • 加载中
计量
  • 文章访问数:  3370
  • HTML全文浏览量:  267
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-22
  • 修回日期:  2011-07-11

蛋白质结晶的新进展与药物设计

doi: 10.3969/j.issn.1006-0111.2012.02.001
    基金项目:  国家自然科学基金资助项目(20371050).

摘要: 蛋白质是生命的基础,其功能与它的三维结构密切相关,关于蛋白质的结构信息,对科学家根据结构同源性确定药物靶标以及发现新的药物靶标等方面均有至关重要的作用。因此,蛋白质晶体的获得及其与药物设计的关系日益受到重视,已成为生命科学中的一个重要领域,本文主要综述了蛋白质结晶技术的最新研究进展以及在药物设计中的应用。

English Abstract

陈维敬, 仲维清. 蛋白质结晶的新进展与药物设计[J]. 药学实践与服务, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
引用本文: 陈维敬, 仲维清. 蛋白质结晶的新进展与药物设计[J]. 药学实践与服务, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
CHEN Wei-jing, ZHONG Wei-qing. New progress of protein crystallization and drug design[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
Citation: CHEN Wei-jing, ZHONG Wei-qing. New progress of protein crystallization and drug design[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(2): 81-85,136. doi: 10.3969/j.issn.1006-0111.2012.02.001
参考文献 (37)

目录

    /

    返回文章
    返回