留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定

万众 于丹 王菲 李伟 张海

万众, 于丹, 王菲, 李伟, 张海. 红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定[J]. 药学实践与服务, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
引用本文: 万众, 于丹, 王菲, 李伟, 张海. 红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定[J]. 药学实践与服务, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
WAN Zhong, YU Dan, WANG Fei, LI Wei, ZHANG Hai. Identification of chemical components and monosaccharide assay in Nocardia rubra cell wall skeleton[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
Citation: WAN Zhong, YU Dan, WANG Fei, LI Wei, ZHANG Hai. Identification of chemical components and monosaccharide assay in Nocardia rubra cell wall skeleton[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073

红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定

doi: 10.12206/j.issn.1006-0111.202003073
基金项目: 上海市卫健委科研面上项目(201740217)
详细信息
    作者简介:

    万 众,硕士研究生,Tel:(021)63240090,Email:smmuwz@126.com

    通讯作者: 张 海,副教授,研究方向:药物分析,Tel:(021)20261401,Email:zhxdks2005@126.com
  • 中图分类号: R284.1

Identification of chemical components and monosaccharide assay in Nocardia rubra cell wall skeleton

  • 摘要:   目的  分析鉴别红色诺卡菌细胞壁骨架(Nr-CWS)中的化学成分,并对其中的单糖成分进行分析测定。  方法  首先,采用UHPLC-Q-TOF/MS方法对Nr-CWS提取物中的化学成分进行分离与分析,通过与Metlin数据库中代谢物成分信息比对,快速鉴别其中化学成分。然后,对Nr-CWS提取物中多糖水解后衍生化,采用UHPLC-MS/MS法对单糖衍生物进行定量分析,测定单糖的含量。  结果  共鉴别出Nr-CWS提取物中的64个化学成分,主要包括氨基酸、单糖、脂肪酸等成分。此外,建立了8种单糖柱前衍生化的UHPLC-MS/MS含量测定方法,含量测定结果表明,Nr-CWS中阿拉伯糖和半乳糖的含量最高,说明阿拉伯糖、半乳糖是组成Nr-CWS中多糖的主要组成成分。  结论  通过对Nr-CWS中的主要化学成分进行了分离与分析,对多糖水解后的单糖成分进行含量测定,为今后开展Nr-CWS活性成分的筛选及药理作用机制的研究奠定基础。
  • 图  1  Nr-CWS全成分分析UHPLC-Q-TOF/MS图谱

    A.负离子模式;B. 正离子模式

    图  2  单糖衍生化物的UHPLC-MS/MS色谱图

    A.8个单糖衍生化物的UHPLC-MS/MS一级质谱图;B. UHPLC-MS/MS二级质谱图(m/z 481.1→175.0, 217.1);C. UHPLC-MS/MS二级质谱图(m/z 495.1 →175.0, 217.1);D. UHPLC-MS/MS二级质谱图(m/z 511.1→175.0, 217.1)1. D-甘露糖;2.D-核糖;3.L-鼠李糖;4.D-果糖;5.D-葡萄糖;6.D-木糖;7.D-半乳糖;8.D-阿拉伯糖

    表  1  Nr-CWS中化学分析的UHPLC-Q-TOF/MS数据信息

    序号化合物名称[M+X]分子式m/z保留时间(t/min)
    12-(S-glutathionyl)acetyl glutathioneM-HC22H34N6O13S2654.162 50.91
    22-(S-glutathionyl)acetyl glutathioneM+HC22H34N6O13S2654.668 00.91
    3estradiol-17alpha 3-D-glucuronosideM-HC24H32O8448.209 71.12
    4tyrosineM+HC9H11NO3181.190 01.13
    5cer(d18∶0/23∶0)M+HC41H83NO3637.637 31.30
    6palmitic acidM-HC16H32O2256.424 11.31
    7stearic acidM-HC18H36O2284.271 51.31
    8L-threonineM+HC4H9NO3119.120 01.33
    9D-xyloseM-HC5H10O5150.130 01.34
    10N-acetyl-D-glucosamineM-HC8H15NO6221.210 01.39
    11meso-2,6-diaminopimelic acidM+HC7H14N2O4190.197 11.39
    12leinoleic acidM+HC18H32O2280.445 51.41
    13cholineM+HC5H15NO104.170 81.56
    14L-rhamnose monohydrateM-HC6H12O5164.160 01.64
    15docosapentaenoic acidM-HC22H34O2330.255 91.67
    16prolineM-HC5H9NO2115.130 01.93
    17fructose 1,6-bisphosphateM+HC6H14O12P2339.996 02.22
    18glucose 6-phosphateM+HC6H13O9P260.135 82.28
    19fucoseM-HC6H12O5164.150 02.34
    20L-prolineM-HC5H9NO2115.063 32.34
    21PG(18∶0/20∶3(8Z,11Z,14Z))M-HC44H81O10P800.556 75.96
    22tetracosanoic acidM-HC24H48O2368.636 77.07
    23orotidylic acidM-HC10H13N2O11P368.190 87.65
    24sphinganineM+HC18H39NO2301.507 87.72
    25valineM-HC5H11NO2117.150 07.74
    26cervonoyl ethanolamideM-HC24H36O3372.540 87.94
    27phytosphingosineM+HC18H39NO3317.507 27.94
    28tryptophanM+HC11H12N2O2204.230 07.97
    29trihexosylceramide (d18∶1/12∶0)M-HC48H89NO18967.608 08.10
    30histidineM+HC6H9N3O2155.160 08.45
    31L-asparagineM-HC4H8N2O3132.120 09.65
    32galactinol dihydrateM-HC12H26O13378.327 09.66
    333-hydroxydodecanoyl carnitineM+HC19H37NO5359.500 89.70
    34L-cysteineM+HC3H7NO2S121.120 09.84
    35cysteinyl-threonineM-HC7H14N2O4S222.067 49.98
    36D-mannoseM-HC6H12O6180.160 010.10
    37MG (0∶0/24∶1(15Z)/0∶0)M-HC27H52O4440.386 610.11
    384-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronideM-HC16H23N3O8385.369 111.32
    39D-glucoseM-HC6H12O6180.160 011.34
    40desmosineM+HC24H40N5O8526.603 111.38
    41L-methionineM+HC5H11O2NS149.210 011.59
    42glycogenM-HC24H42O21666.577 711.90
    43levanM-HC18H32O16504.437 111.90
    44D-galactoseM-HC6H12O6180.160 011.92
    45L-beta-aspartyl-L-aspartic acidM+HC8H12N2O7248.190 112.00
    46muramic acidM-HC9H17NO7251.233 812.16
    471-pyrroline-2-carboxylic acidM-HC5H7NO2113.114 612.25
    48ADP-glucoseM-HC16H25N5O15P2589.341 712.25
    49DG(42∶10)M+HC45H68O5688.506 712.27
    50isoleucineM-HC6H13NO2131.170 012.55
    51leucineM-HC6H13NO2131.170 012.79
    52PGP(16∶1(9Z)/18∶0)M-HC40H78O13P2828.491 812.99
    53PGP(16∶0/20∶4)M+HC42H76O13P2850.992 613.01
    54TG(62∶6)M-HC65H114O6990.861 513.60
    55ganglioside GM3 (d18∶1/16∶0)M-HC57H104N2O211152.713 214.15
    56valyl-methionineM+HC10H20N2O3S248.342 014.18
    57DG(18∶2n6/0∶0/22∶6n3)M-HC44H70O5678.522 315.27
    58PS(16∶0/18∶2)M-HC40H74NO10P759.990 015.90
    59PGP(18∶1/22∶6)M-HC46H78O13P2900.491 816.62
    60CDP-DG(16∶0/18∶0)M-HC46H85N3O15P2981.545 617.41
    61TG(22∶6(4Z,7Z,10Z,13Z,16Z,19Z)/24∶0/22∶6(4Z,7Z,10Z,13Z,16Z,19Z))M-HC71H114O61 062.861 518.28
    62TG(24∶0/24∶0/24∶0)M-HC75H146O61 143.111 919.25
    63serineM-HC3H7NO3105.090 027.23
    64alanineM-HC3H7NO289.090 027.28
    下载: 导出CSV

    表  2  UHPLC-MS/MS分析测定的质谱条件

    序号化合物名称保留时间(t/min)分子式单糖分子量衍生物分子量母离子子离子碰撞电压(eV)
    1D-甘露糖2.012C6H12O6180.1512.1511.1175.0, 217.134
    2D-核糖2.216C5H10O5150.1482.1481.1175.0, 217.131
    3L-鼠李糖2.423C6H14O6164.1496.1495.1175.0, 217.131
    4D-果糖2.504C6H12O6180.1512.1511.1175.0, 217.134
    5D-葡萄糖3.725C6H12O6180.1512.1511.1175.0, 217.134
    6D-木糖3.917C5H10O5150.1482.1481.1175.0, 217.131
    7D-半乳糖3.918C6H12O6180.1512.1511.1175.0, 217.134
    8D-阿拉伯糖4.086C5H10O5150.1482.1481.1175.0, 217.131
    下载: 导出CSV

    表  3  单糖衍生物的标准曲线及定量限和检测限

    序号化合物回归方程r浓度范围(μg/ml)定量限(ng/ml)检测限(ng/ml)
    1D-甘露糖Y = 383.2 X − 92.40.9960.05~10205
    2D-核糖Y = 656.8 X − 109.50.9940.10~205020
    3L-鼠李糖Y = 1025.3 X − 386.40.9920.50~100205
    4D-果糖Y = 902.3 X − 133.10.9940.10~2010050
    5D-葡萄糖Y = 2875.3 X − 342.90.9930.50~10010050
    6D-木糖Y = 2391.1 X − 1004.60.9950.05~105020
    7D-半乳糖Y =3482.4 X − 1093.50.9981.00~20010050
    8D-阿拉伯糖Y = 5436.8 X − 2102.30.9925.00~10005020
    下载: 导出CSV

    表  4  Nr-CWS提取物(1~6)中8种单糖成分的含量测定结果

    提取物编号单糖成分(μg/ml)
    D-甘露糖D-核糖D-鼠李糖D-果糖D-葡萄糖D-木糖D-半乳糖D-阿拉伯糖
    10.95.312.218.955.120.9320.8456.1
    22.14.621.412.448.319.2205.6504.8
    33.23.530.59.861.923.1223.0327.3
    45.56.619.815.445.827.8305.4462.8
    51.54.923.414.739.112.1311.7489.1
    64.77.625.122.552.727.2289.2510.8
    平均值3.05.422.115.650.521.7276.0458.5
    下载: 导出CSV
  • [1] 林清强, 石颖岚, 李琼, 等. 红色诺卡氏菌细胞壁骨架多糖成分的分离纯化[J]. 赤峰学院学报(自然科学版), 2015, 31(16):17-19.
    [2] 黄文伟, 谢必峰. 基于响应面法对红色诺卡氏菌发酵条件的优化及其发酵动力学研究[J]. 药物生物技术, 2015, 22(1):49-52.
    [3] 张祝兰, 林善, 唐文力, 等. 红色诺卡氏菌细胞壁骨架的理化性质、化学成分及含量测定的研究[J]. 中国抗生素杂志, 2002, 27(9):532-534. doi:  10.3969/j.issn.1001-8689.2002.09.006
    [4] AZUMA I, TANIYAMA T, YAMAWAKI M, et al. Adjuvant and antitumor activities of <italic>Nocardia</italic> cell-wall skeletons[J]. Gan,1976,67(5):733-736.
    [5] 张元芬. 红色诺卡氏菌细胞壁骨架(N-cws)通过产生LAK细胞辅助因子对人LAK细胞的增强作用[J]. 福建医药杂志, 1991, 13(5):10.
    [6] 梁宇庭, 周骏辉, 南铁贵, 等. 柱前衍生化UPLC-MS/MS测定12种单糖含量的方法学研究及其应用[J]. 中国中药杂志, 2018, 43(22):4469-4473.
    [7] 胡蓉蓉, 姚鑫. UPLC-MS/MS测定银杏叶提取物中10个黄酮类成分的含量[J]. 中国实验方剂学杂志, 2017, 23(24):90-95.
    [8] 王笑笑, 周勇, 徐国群, 等. 黄酮类成分在蜂蜜抗菌性中的效能研究[J]. 中国现代应用药学, 2017, 34(3):363-369.
    [9] 周彦强, 吴光斌, 陈发河. PMP柱前衍生化HPLC法测定黄秋葵多糖的单糖组成[J]. 食品科学, 2019, 40(4):266-271. doi:  10.7506/spkx1002-6630-20180130-426
    [10] XUE S J, WANG L L, CHEN S Q, et al. Simultaneous analysis of saccharides between fresh and processed <italic>Radix</italic> rehmanniae by HPLC and UHPLC-LTQ-orbitrap-MS with multivariate statistical analysis[J]. Molecules,2018,23(3):E541. doi:  10.3390/molecules23030541
    [11] JIANG W X, DI S X, HUA H M, et al. Structural characterization of polysaccharide from <italic>Cyclocarya paliurus</italic> leaves and itsα-glucosidase inhibitory effect[J]. Chin Tradition Herb Drugs,2017,48(8):1524-1528.
    [12] 张璐瑶, 赵峡, 陈欢欢. 糖类化合物PMP衍生分析进展[J]. 分析测试学报, 2016, 35(3):367-372. doi:  10.3969/j.issn.1004-4957.2016.03.020
    [13] LI H L, LONG C N, ZHOU J, et al. Rapid analysis of mono-saccharides and oligo-saccharides in hydrolysates of lignocellulosic biomass by HPLC[J]. Biotechnol Lett,2013,35(9):1405-1409. doi:  10.1007/s10529-013-1224-4
    [14] GAO Y Y, JIANG Y, CHEN G C, et al. A sensitive and rapid UPLC-MS/MS method for determination of monosaccharides and anti-allergic effect of the polysaccharides extracted from <italic>Saposhnikoviae radix</italic>[J]. Molecules,2018,23(8):E1924. doi:  10.3390/molecules23081924
    [15] 赵丹, 冯峰, 粟有志, 等. 超高效液相色谱-串联质谱法测定螺旋藻多糖的单糖组成[J]. 色谱, 2017, 35(4):413-420.
    [16] FAN B L, LI T T, SONG X F, et al. A rapid, accurate and sensitive method for determination of monosaccharides in different varieties of <italic>Osmanthus fragrans</italic> Lour by pre-column derivatization with HPLC-MS/MS[J]. Int J Biol Macromol,2019,125:221-231. doi:  10.1016/j.ijbiomac.2018.12.033
    [17] 王媛媛, 张晖, 杨俊松, 等. 柱前衍生化高效液相色谱法分析9种多糖中的单糖组成[J]. 济宁医学院学报, 2016, 39(4):241-244. doi:  10.3969/j.issn.1000-9760.2016.04.004
    [18] WU X D, JIANG W, LU J J, et al. Analysis of the monosaccharide composition of water-soluble polysaccharides from <italic>Sargassum fusiforme</italic> by high performance liquid chromatography/electrospray ionisation mass spectrometry[J]. Food Chem,2014,145:976-983. doi:  10.1016/j.foodchem.2013.09.019
    [19] 李婷婷, 王雪吟, 胡丹荔, 等. 柱前衍生法测定桂花多糖中的6种单糖的含量[J]. 食品工业, 2019, 40(4):323-327.
    [20] 符梦凡, 赵一帆, 阎卫东. 柱前衍生化HPLC法分析枸杞多糖中单糖组成[J]. 食品科学, 2018, 39(18):186-191. doi:  10.7506/spkx1002-6630-201818029
  • [1] 邢心睿, 曹奇, 陈思, 朱臻宇.  基于UHPLC-Q-TOF/MS技术对扶正化瘀胶囊入血成分的快速鉴别 . 药学实践与服务, 2020, 38(3): 250-254, 267. doi: 10.12206/j.issn.1006-0111.201906027
    [2] 戴媛媛, 汪晓河, 马明华, 计强国, 顾小燕, 吴铁军, 年华.  高效液相-高分辨飞行时间质谱对复方夏枯草消瘤方化学成分的鉴别 . 药学实践与服务, 2020, 38(2): 138-142, 155. doi: 10.3969/j.issn.1006-0111.201907116
    [3] 叶财发, 蔡跃辉, 曾棋平, 曹毅祥, 陈锦珊.  复方首乌藤合剂的总多糖含量测定及单糖组分分析 . 药学实践与服务, 2020, 38(2): 161-165. doi: 10.3969/j.issn.1006-0111.201908021
    [4] 曹青青, 李盛建, 李云青, 葛继云, 陈俊, 周瑾, 钱跹, 赵亮.  月腺大戟的化学成分及其乳腺癌细胞毒活性研究 . 药学实践与服务, 2019, 37(4): 309-313,317. doi: 10.3969/j.issn.1006-0111.2019.04.005
    [5] 陶朝阳, 邢心睿, 陈思, 曹奇, 丁德英, 朱臻宇.  联用超高效液相色谱-高分辨飞行时间质谱技术对扶正化瘀胶囊化学成分快速鉴别 . 药学实践与服务, 2019, 37(5): 406-415. doi: 10.3969/j.issn.1006-0111.2019.05.005
    [6] 张建花, 许月明, 何玉琼, 宋洪涛, 杜娟, 张巧艳.  巴戟天环烯醚萜苷类成分含量测定和提取方法的研究 . 药学实践与服务, 2017, 35(4): 328-333. doi: 10.3969/j.issn.1006-0111.2017.04.010
    [7] 李玲, 吕磊, 董昕, 吕狄亚, 娄子洋.  应用RRLC-TOFMS技术快速鉴别中药艾叶中的化学成分 . 药学实践与服务, 2014, 32(6): 448-452. doi: 10.3969/j.issn.1006-0111.2014.06.012
    [8] 王灵霞, 朱东亮, 柴逸峰.  高效液相色谱法同时测定3种不同剂型六味地黄丸中4种成分的含量 . 药学实践与服务, 2013, 31(4): 296-299. doi: 10.3969/j.issn.1006-0111.2013.04.016
    [9] 颜滢, 黄晨.  苦楝皮的化学成分研究 . 药学实践与服务, 2011, 29(4): 285-286,317.
    [10] 邬美玉.  山莓化学成分研究 . 药学实践与服务, 2011, 29(4): 287-290.
    [11] 栾晓琳, 张海, 王慧, 陈俊, 张国庆.  HPLC-TOFMS法快速分离与鉴别丹香冠心注射液中的化学成分 . 药学实践与服务, 2011, 29(3): 214-216.
    [12] 原源, 来威, 杨琦, 孙连娜, 陈万生.  葱子化学成分的研究(Ⅱ) . 药学实践与服务, 2010, 28(6): 426-428.
    [13] 曹琴, 陈建涛.  小蓟的化学成分研究 . 药学实践与服务, 2010, 28(4): 271-273.
    [14] 曹琴, 王凯伟.  中药酸枣仁的化学成分研究 . 药学实践与服务, 2009, 27(3): 209-210,213.
    [15] 汤华, 王旭东, 陆祎, 程萍, 林厚文.  海燕化学成分研究 . 药学实践与服务, 2009, 27(2): 99-100,103.
    [16] 苏永庆, 沈云亨, 张卫东.  大花鸡肉参的化学成分研究 . 药学实践与服务, 2008, (3): 166-168,171.
    [17] 姜杰, 郭美丽, 王小燕, 戴蔚荃, 何邦平, 林锦明.  青葙子药理作用及鉴别研究概况 . 药学实践与服务, 2008, (5): 337-339.
    [18] 廖洪利, 王伟新, 赵福胜, 叶光明, 吴秋业.  知母化学成分研究进展 . 药学实践与服务, 2005, (1): 12-14.
    [19] 张卫军, 张中湖, 陆峰, 柴逸峰.  假劣药品鉴别方法的研究进展 . 药学实践与服务, 2004, (6): 357-359.
    [20] 韩广轩, 谷莉, 尹建设, 程金玲.  鸡蛋参化学成分的研究 . 药学实践与服务, 2001, (3): 174-175.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  5087
  • HTML全文浏览量:  1286
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 修回日期:  2020-05-25
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2020-09-25

红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定

doi: 10.12206/j.issn.1006-0111.202003073
    基金项目:  上海市卫健委科研面上项目(201740217)
    作者简介:

    万 众,硕士研究生,Tel:(021)63240090,Email:smmuwz@126.com

    通讯作者: 张 海,副教授,研究方向:药物分析,Tel:(021)20261401,Email:zhxdks2005@126.com
  • 中图分类号: R284.1

摘要:   目的  分析鉴别红色诺卡菌细胞壁骨架(Nr-CWS)中的化学成分,并对其中的单糖成分进行分析测定。  方法  首先,采用UHPLC-Q-TOF/MS方法对Nr-CWS提取物中的化学成分进行分离与分析,通过与Metlin数据库中代谢物成分信息比对,快速鉴别其中化学成分。然后,对Nr-CWS提取物中多糖水解后衍生化,采用UHPLC-MS/MS法对单糖衍生物进行定量分析,测定单糖的含量。  结果  共鉴别出Nr-CWS提取物中的64个化学成分,主要包括氨基酸、单糖、脂肪酸等成分。此外,建立了8种单糖柱前衍生化的UHPLC-MS/MS含量测定方法,含量测定结果表明,Nr-CWS中阿拉伯糖和半乳糖的含量最高,说明阿拉伯糖、半乳糖是组成Nr-CWS中多糖的主要组成成分。  结论  通过对Nr-CWS中的主要化学成分进行了分离与分析,对多糖水解后的单糖成分进行含量测定,为今后开展Nr-CWS活性成分的筛选及药理作用机制的研究奠定基础。

English Abstract

万众, 于丹, 王菲, 李伟, 张海. 红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定[J]. 药学实践与服务, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
引用本文: 万众, 于丹, 王菲, 李伟, 张海. 红色诺卡菌细胞壁骨架中化学成分的鉴别与单糖含量测定[J]. 药学实践与服务, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
WAN Zhong, YU Dan, WANG Fei, LI Wei, ZHANG Hai. Identification of chemical components and monosaccharide assay in Nocardia rubra cell wall skeleton[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
Citation: WAN Zhong, YU Dan, WANG Fei, LI Wei, ZHANG Hai. Identification of chemical components and monosaccharide assay in Nocardia rubra cell wall skeleton[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 423-430. doi: 10.12206/j.issn.1006-0111.202003073
  • 红色诺卡菌(Nocardia rubra,Nr)是一种放线菌,其细胞壁骨架(Nocardia rubra cell wall skeleton,Nr-CWS)具有免疫调节作用[1]。Nr-CWS作为一种治疗药物现已在国内上市并在临床使用。研究表明,Nr-CWS在增强体内巨噬细胞、T细胞和自然杀伤细胞活性的同时,还能诱导机体产生LAK细胞,提高机体内T辅助性细胞和杀伤细胞活力、增强巨噬细胞和天然杀伤细胞免疫活性,抑制肿瘤和增强免疫能力的功效[2-4]。但Nr-CWS在发挥作用的同时,往往还伴随一些副作用的发生。究其主要原因是由于红色诺卡菌细胞壁是个细胞粗提物[5],其中的成分复杂,具体哪种成分起相应的药理作用还不清楚,这极大地影响了其临床使用及后续药理作用机制的研究。本研究拟采用UHPLC-Q-TOF/MS分析方法首先对Nr-CWS提取物中化学成分进行分离分析,鉴别其中的化学成分;并对其中的多糖成分进行水解,然后对水解后的单糖进行衍生化处理,与其他分析方法相比, UHPLC-MS/MS具有较大的优越性[6-8], 其灵敏度高、专属性强、可以快速准确地测定单糖的含量。所以本研究采用UHPLC-MS/MS方法对单糖衍生化产物进行定量分析测定,这将为后期开展Nr-CWS活性成分筛选及药理作用机制的研究奠定基础。

    • 安捷伦-1290 Infinity高效液相色谱系统-电喷雾离子源(安捷伦,Palo Alto, CA, USA)串联安捷伦6538四级杆-高分辨飞行时间质谱(UHPLC-Q-TOF/MS),安捷伦-1290 Infinity高效液相色谱系统-电喷雾离子源(安捷伦,Palo Alto, CA, USA)串联安捷伦6460三重四级杆质谱(UHPLC-MS/MS),AMIDE色谱柱(3.0 mm×100 mm,3.5 µm,Waters,USA),Waters Xbridge C18色谱柱(2.1 mm×100 mm,1.7 μm),Milli-Q50 SP纯水制备系统制备(Millipore Corporation, MA, USA),电热干燥箱(上海恒科仪器有限公司,DHG-9145AZ)。

    • Nr-CWS提取物(辽宁格瑞士特生物科技有限公司,按照产品工艺提取);Sephadex G-100(国药集团化学试剂有限公司);D-甘露糖、D-核糖、L-鼠李糖、D-果糖、D-葡萄糖、D-木糖、D-半乳糖、D-阿拉伯糖(纯度>98%,国药集团化学试剂有限公司);三氟乙酸(TFA)、1-苯基-3-甲基-5-吡唑啉酮(PMP,国药集团化学试剂有限公司);HPLC色谱级甲醇、乙腈(默克公司,Darmstadt, Germany);乙醇、甲酸(Fluka公司,Buchs, Switzerland)。

    • UHPLC-Q-TOF/MS分析在安捷伦1290 Infinity 液相色谱系统和安捷伦6538四极杆-高分辨飞行时间串联质谱仪(Agilent,USA)上进行,色谱分离在Amide色谱柱上进行(3.0 mm×100 mm,3.5 µm,Waters,USA),柱温40 ℃,流动相A为0.1 %甲酸水溶液,流动相B为乙腈溶液,流速0.4 ml/min,流动相采用梯度洗脱,洗脱条件为:0~1 min,5 % A;1~5 min,5 %~20 % A;5~20 min,20%~45 % A;20~30 min,45 % A,进样量为5 µl,自动进样器温度保持在25 ℃。电喷雾离子源(ESI)采用正、负离子模型。Q-TOF/MS质谱参数如下:毛细管电压,正离子模式下4 kV,负离子模式下3.5 kV;干燥器流速11 L/min;气体温度350 ℃;雾化器压力45 psig;碎片电压120 eV;Skimmer电压60 eV。质谱的采集范围m/z 50~1100,分析碰撞能量10~40 eV。

    • 取Nr-CWS提取物溶于1 ml纯水中,充分涡旋溶解后制成Nr-CWS提取物母液,取100 µl于1.5 ml EP管中,加入3倍量的乙醇进行蛋白沉淀。然后4 ℃下13 000 r/min离心15 min,吸取200 µl上清液,于进样瓶中用于UHPLC-Q-TOF/MS分析。

    • 采用UHPLC-Q-TOF/MS分析方法对Nr-CWS提取物样品溶液进行快速地分离与分析,获得正、负离子模式下的总离子流图,通过与Metlin数据库中代谢物信息比对分析,可对Nr-CWS提取物中化学成分进行快速分析与鉴别,结果如图1表1所示。

      图  1  Nr-CWS全成分分析UHPLC-Q-TOF/MS图谱

      表 1  Nr-CWS中化学分析的UHPLC-Q-TOF/MS数据信息

      序号化合物名称[M+X]分子式m/z保留时间(t/min)
      12-(S-glutathionyl)acetyl glutathioneM-HC22H34N6O13S2654.162 50.91
      22-(S-glutathionyl)acetyl glutathioneM+HC22H34N6O13S2654.668 00.91
      3estradiol-17alpha 3-D-glucuronosideM-HC24H32O8448.209 71.12
      4tyrosineM+HC9H11NO3181.190 01.13
      5cer(d18∶0/23∶0)M+HC41H83NO3637.637 31.30
      6palmitic acidM-HC16H32O2256.424 11.31
      7stearic acidM-HC18H36O2284.271 51.31
      8L-threonineM+HC4H9NO3119.120 01.33
      9D-xyloseM-HC5H10O5150.130 01.34
      10N-acetyl-D-glucosamineM-HC8H15NO6221.210 01.39
      11meso-2,6-diaminopimelic acidM+HC7H14N2O4190.197 11.39
      12leinoleic acidM+HC18H32O2280.445 51.41
      13cholineM+HC5H15NO104.170 81.56
      14L-rhamnose monohydrateM-HC6H12O5164.160 01.64
      15docosapentaenoic acidM-HC22H34O2330.255 91.67
      16prolineM-HC5H9NO2115.130 01.93
      17fructose 1,6-bisphosphateM+HC6H14O12P2339.996 02.22
      18glucose 6-phosphateM+HC6H13O9P260.135 82.28
      19fucoseM-HC6H12O5164.150 02.34
      20L-prolineM-HC5H9NO2115.063 32.34
      21PG(18∶0/20∶3(8Z,11Z,14Z))M-HC44H81O10P800.556 75.96
      22tetracosanoic acidM-HC24H48O2368.636 77.07
      23orotidylic acidM-HC10H13N2O11P368.190 87.65
      24sphinganineM+HC18H39NO2301.507 87.72
      25valineM-HC5H11NO2117.150 07.74
      26cervonoyl ethanolamideM-HC24H36O3372.540 87.94
      27phytosphingosineM+HC18H39NO3317.507 27.94
      28tryptophanM+HC11H12N2O2204.230 07.97
      29trihexosylceramide (d18∶1/12∶0)M-HC48H89NO18967.608 08.10
      30histidineM+HC6H9N3O2155.160 08.45
      31L-asparagineM-HC4H8N2O3132.120 09.65
      32galactinol dihydrateM-HC12H26O13378.327 09.66
      333-hydroxydodecanoyl carnitineM+HC19H37NO5359.500 89.70
      34L-cysteineM+HC3H7NO2S121.120 09.84
      35cysteinyl-threonineM-HC7H14N2O4S222.067 49.98
      36D-mannoseM-HC6H12O6180.160 010.10
      37MG (0∶0/24∶1(15Z)/0∶0)M-HC27H52O4440.386 610.11
      384-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronideM-HC16H23N3O8385.369 111.32
      39D-glucoseM-HC6H12O6180.160 011.34
      40desmosineM+HC24H40N5O8526.603 111.38
      41L-methionineM+HC5H11O2NS149.210 011.59
      42glycogenM-HC24H42O21666.577 711.90
      43levanM-HC18H32O16504.437 111.90
      44D-galactoseM-HC6H12O6180.160 011.92
      45L-beta-aspartyl-L-aspartic acidM+HC8H12N2O7248.190 112.00
      46muramic acidM-HC9H17NO7251.233 812.16
      471-pyrroline-2-carboxylic acidM-HC5H7NO2113.114 612.25
      48ADP-glucoseM-HC16H25N5O15P2589.341 712.25
      49DG(42∶10)M+HC45H68O5688.506 712.27
      50isoleucineM-HC6H13NO2131.170 012.55
      51leucineM-HC6H13NO2131.170 012.79
      52PGP(16∶1(9Z)/18∶0)M-HC40H78O13P2828.491 812.99
      53PGP(16∶0/20∶4)M+HC42H76O13P2850.992 613.01
      54TG(62∶6)M-HC65H114O6990.861 513.60
      55ganglioside GM3 (d18∶1/16∶0)M-HC57H104N2O211152.713 214.15
      56valyl-methionineM+HC10H20N2O3S248.342 014.18
      57DG(18∶2n6/0∶0/22∶6n3)M-HC44H70O5678.522 315.27
      58PS(16∶0/18∶2)M-HC40H74NO10P759.990 015.90
      59PGP(18∶1/22∶6)M-HC46H78O13P2900.491 816.62
      60CDP-DG(16∶0/18∶0)M-HC46H85N3O15P2981.545 617.41
      61TG(22∶6(4Z,7Z,10Z,13Z,16Z,19Z)/24∶0/22∶6(4Z,7Z,10Z,13Z,16Z,19Z))M-HC71H114O61 062.861 518.28
      62TG(24∶0/24∶0/24∶0)M-HC75H146O61 143.111 919.25
      63serineM-HC3H7NO3105.090 027.23
      64alanineM-HC3H7NO289.090 027.28
    • 准确称取D-甘露糖、D-核糖、L-鼠李糖、D-果糖、D-葡萄糖、D-木糖、D-半乳糖、D-阿拉伯糖各10 mg,分别置10 ml 容量瓶,各加水定容,即得1 mg/ml浓度的各单糖标准品溶液。分别精密取上述单糖标准品溶液,混合后加重蒸水稀释,制成100 μg/ml的单糖混合标准溶液。

    • 精密称取1-苯基-3-甲基-5-吡唑啉酮(PMP)1.0 g,置10 ml量瓶中,加甲醇溶解并定容,摇匀,制得0.5 mol/L的PMP 甲醇溶液。

    • 精密吸取单糖及混合标准品溶液100 μl置2 ml EP管中,添加100 μl氨水,再加入100 μl 0.5 mol/L的PMP甲醇溶液,涡旋30~45 s,于70 ℃烘箱中加热30 min,取出放冷至室温。加入100 μl乙酸,涡旋30 s中和,加重蒸水至1 ml,再加500 μl氯仿,涡旋30 s,混匀,弃去下层溶液,重复3 次,12 000 r/min离心10 min,水层经0.22 μm微孔滤膜滤过,取次滤液用于UHPLC-MS/MS分析,见表2

      表 2  UHPLC-MS/MS分析测定的质谱条件

      序号化合物名称保留时间(t/min)分子式单糖分子量衍生物分子量母离子子离子碰撞电压(eV)
      1D-甘露糖2.012C6H12O6180.1512.1511.1175.0, 217.134
      2D-核糖2.216C5H10O5150.1482.1481.1175.0, 217.131
      3L-鼠李糖2.423C6H14O6164.1496.1495.1175.0, 217.131
      4D-果糖2.504C6H12O6180.1512.1511.1175.0, 217.134
      5D-葡萄糖3.725C6H12O6180.1512.1511.1175.0, 217.134
      6D-木糖3.917C5H10O5150.1482.1481.1175.0, 217.131
      7D-半乳糖3.918C6H12O6180.1512.1511.1175.0, 217.134
      8D-阿拉伯糖4.086C5H10O5150.1482.1481.1175.0, 217.131
    • UHPLC-MS/MS分析采用安捷伦1290 Infinity 液相色谱系统和安捷伦6460三重四极杆串联质谱仪(Agilent,USA)。色谱分离在Waters Xbridge C18色谱柱(2.1 mm×100 mm,1.7 μm),柱温40 ℃,流动相A为20 mmol/L的乙酸铵水溶液(氨水调pH 8.0),流动相B为乙腈溶液,流速0.4 ml/min,流动相采用梯度洗脱,洗脱条件为:0~2 min,15%~20% B;2~4 min,20%~25% B;4~5 min,25%~95 % B,5~6 min,15 % B,样品分析时间5 min,柱后平衡时间1 min。进样量为2 µl,自动进样器温度保持25 ℃。三重四级杆质谱条件为:电喷雾离子源(ESI)采用负离子,多级反应选择离子监测模式:毛细管电压3.5 kV;干燥器流速11 L/min;气体温度350 ℃;雾化器压力40 psig;碎片电压80 eV;Skimmer电压60 eV。

    • 精密吸取Nr-CWS提取物溶液1 ml,加入2 mol/L的TFA 2.0 ml,放入110 ℃的真空干燥箱中,酸性条件下水解6 h,冷却至室温,4 ℃条件下离心干燥,挥发三氟乙酸,加重蒸水1 ml复溶,用于衍生化处理。

    • 精密吸取Nr-CWS提取物的水解液100 μl,按照前述单糖衍生化方法进行前处理后,精密吸取前处理后的样品溶液2 μl进UHPLC-MS/MS分析,混合标准品和Nr-CWS样品衍生化后的UHPLC-MS/MS色谱图见图2

      图  2  单糖衍生化物的UHPLC-MS/MS色谱图

    • 精密吸取单糖混合标准品溶液,按前述单糖衍生化方法进行前处理后,精密吸取前处理后的样品溶液2 μl用UHPLC-MS/MS法分析,以各单糖峰面积与相应浓度进行线性回归分析,计算回归方程和相关系数,逐步稀释后,按照信噪比S/N=10和3,分别计算其定量限和检测限,结果见表3

      表 3  单糖衍生物的标准曲线及定量限和检测限

      序号化合物回归方程r浓度范围(μg/ml)定量限(ng/ml)检测限(ng/ml)
      1D-甘露糖Y = 383.2 X − 92.40.9960.05~10205
      2D-核糖Y = 656.8 X − 109.50.9940.10~205020
      3L-鼠李糖Y = 1025.3 X − 386.40.9920.50~100205
      4D-果糖Y = 902.3 X − 133.10.9940.10~2010050
      5D-葡萄糖Y = 2875.3 X − 342.90.9930.50~10010050
      6D-木糖Y = 2391.1 X − 1004.60.9950.05~105020
      7D-半乳糖Y =3482.4 X − 1093.50.9981.00~20010050
      8D-阿拉伯糖Y = 5436.8 X − 2102.30.9925.00~10005020
    • 取经水解和衍生化反应后的单糖混合标准溶液,按照前述UHPLC-MS/MS分析测定条件,连续进样6次,计算其测定结果的RSD为3.13%,结果表明该方法的精密度良好,符合分析测定的要求。

    • Nr-CWS提取物溶液经水解和衍生化反应后,室温下放置,分别于0、5、l5、30、60、120 min进样,进行UHPLC-MS/MS分析,测定其浓度,对样品的稳定性进行评价,结果6次测定结果的RSD为7.63%,表明样品在2 h内稳定性良好,符合分析测定的要求。

    • 取同一批样品,重复测定6次,计算其测定结果RSD为4.67%,表明该方法的重复性良好,符合分析测定的要求。

    • 精密吸取已知含量的Nr-CWS提取物加入接近等量的单糖混合标准品溶液,经水解和衍生化反应后,进行UHPLC-MS/MS分析,计算其平均回收率为86.93%,RSD为9.15%,符合分析测定的要求。

    • 精密吸取Nr-CWS提取物样品溶液6份,经水解衍生化后,按照前述UHPLC-MS/MS分析条件对衍生化后的样品进行分离分析,测定其中单糖的含量,结果见表4,可以看出8种单糖成分都能被检出,其中阿拉伯糖和半乳糖的含量最高。

      表 4  Nr-CWS提取物(1~6)中8种单糖成分的含量测定结果

      提取物编号单糖成分(μg/ml)
      D-甘露糖D-核糖D-鼠李糖D-果糖D-葡萄糖D-木糖D-半乳糖D-阿拉伯糖
      10.95.312.218.955.120.9320.8456.1
      22.14.621.412.448.319.2205.6504.8
      33.23.530.59.861.923.1223.0327.3
      45.56.619.815.445.827.8305.4462.8
      51.54.923.414.739.112.1311.7489.1
      64.77.625.122.552.727.2289.2510.8
      平均值3.05.422.115.650.521.7276.0458.5
    • Nr-CWS提取物中化学成分的分析鉴别,采用UHPLC-Q-TOF/MS分析方法对Nr-CWS提取物样品溶液进行快速地分离分析[15-16],获得正、负离子模式下的总离子流图,通过与Metlin数据库中代谢物信息快速地比对分析,共鉴别出Nr-CWS提取物中64个化学成分,其中包含氨基酸、脂肪酸、单糖、胞壁酸、粘肽等成分,说明Nr-CWS提取物中含有很多的细胞代谢产物,且以氨基酸、脂肪酸和糖类成分为主,这些成分就是Nr-CWS提取物发挥作用的主要成分。

      由于Nr-CWS提取物中成分复杂,采用UHPLC-Q-TOF/MS方法直接对提取物进行分析,仅能检测到个别单糖成分,如木糖、半乳糖、葡萄糖等,说明Nr-CWS提取物中主要含有多糖成分,经水解衍生化后[17-20],采用UHPLC-MS/MS方法进行检测,8个单糖都能被检测到,且阿拉伯糖和半乳糖的含量最高,说明Nr-CWS中的多糖主要由阿拉伯糖和半乳糖组成,这将为进一步的多糖成分分析鉴别奠定基础。

      对单糖进行分析测定的方法有很多,我们通过比较衍生化和不衍生化方法的检测限和定量限,发现单糖衍生化后,其定量限和检测限更低,测定干扰更少,分析方法学验证结果表明,其精密度、重现性、稳定性和回收率均符合分析测定的要求。

    • 本研究采用UHPLC-Q-TOF/MS方法对Nr-CWS提取物中化学成分进行了快速地分离与分析,通过与Metlin代谢物成分数据库比对,共鉴别出Nr-CWS提取物中64个化学成分,主要包括氨基酸、糖类、脂肪酸等成分;对Nr-CWS提取物中糖类成分衍生化后,采用UHPLC-MS/MS分析方法对Nr-CWS提取物中8种单糖成分进行含量测定。结果表明,Nr-CWS中阿拉伯糖的含量最高,其次为半乳糖,说明Nr-CWS中发挥作用的主要多糖类成分可能主要由这几种单糖组成。通过本研究为后期开展Nr-CWS活性成分筛选及药理作用机制的研究奠定了基础。

参考文献 (20)

目录

    /

    返回文章
    返回