留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

蒋琦 钱其军

蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
引用本文: 蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
Citation: JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

doi: 10.3969/j.issn.1006-0111.2015.02.019
基金项目: 国家科技重大专项资助项目(No.2013ZX10002-010-007)

Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research

  • 摘要: 肿瘤相关免疫抑制性细胞在肿瘤的发生、发展过程中发挥重要的免疫抑制作用,肿瘤的发展和转移常伴有这些细胞的异常聚集。调节性T细胞(regulatory T cells, Treg)和髓系来源的抑制性细胞(myeloid-derived suppressor cells,MDSC)是免疫抑制性细胞网络的主要成分,它们通过直接或间接作用负向调节其他免疫细胞,抑制抗肿瘤的免疫反应。最新研究显示,有些常规化疗药物除可直接杀伤肿瘤细胞外,还可降低Treg和MDSC的数量,抑制其功能,从而增强抗肿瘤免疫功能。因此,将化疗药物作为预处理方案,凭借其免疫调节作用联合后续的过继性细胞免疫治疗可有效增强抗肿瘤免疫应答。化学免疫治疗策略将改变人们对传统化疗抗肿瘤地位的认识,继而更加合理地应用化疗药物。
  • [1] Thompson RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer[J].Clin Genitourin Cancer,2006,5(3),206-211.
    [2] Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol,2006,6(10):715-727.
    [3] Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol,2009,9(3):162-174.
    [4] Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer,2007,7(11):880-887.
    [5] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.
    [6] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
    [7] 曾益新,吕有勇,朱明华,等.肿瘤学[M].3版. 北京:人民卫生出版社,2012:281-282.
    [8] North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J]. J Exp Med,1982,155(4):1063-1074.
    [9] Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy[J]. Adv Cancer Res,2010,107:1-37.
    [10] Wada S, Yoshimura K, Hipkiss EL, et al. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model[J]. Cancer Res,2009,69(10):4309-4318.
    [11] Ghiringhelli F, Larmonier N, Schmitt E, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol,2004,34(2):336-344.
    [12] Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity[J]. Cancer Immunol Immunother,2013,62(2):203-216.
    [13] Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer,2009,100(11):1697-1703.
    [14] Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients[J]. Cancer Immunol Immunother,2007,56(5):641-648.
    [15] Zhang L,Dermawan K,Jin M,et al.Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy[J].Clin Immunol,2008,129(2):219-229.
    [16] Liu N, Zheng Y, Zhu Y, et al. Selective impairment of CD4+CD25+Foxp3(+) regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J]. Int mmunopharmacol,2011,11(2):212-219.
    [17] Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement[J]. Clin Cancer Res,2008,14(11):3536-3544.
    [18] Reinartz S, Pfisterer J, du Bois A, et al. Suppressive activity rather than frequency of FoxP3(+) regulatory T cells is essential for CA-125-specific T-cell activation after abagovomab treatment[J]. Hum Immunol,2010,71(1):36-44.
    [19] Banissi C, Ghiringhelli F, Chen L, et al. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J]. Cancer Immunol Immunother,2009,58(10):1627-1634.
    [20] Ridolfi L, Petrini M, Granato AM, et al. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25+Foxp3(+) regulatory T-cells in advanced melanoma patients[J]. J Transl Med,2013,11:135.
    [21] Correale P, Cusi MG, Tsang KY, et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol,2005,23(35):8950-8958.
    [22] Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells[J]. Cancer Immunol Immunother,2009,58(7):1033-1045.
    [23] Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol,2009,182(8):4499-4506.
    [24] Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010,70(8):3052-3061.
    [25] Kodumudi KN, Woan K, Gilvary DL, et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res,2010,16(18):4583-4594.
    [26] Kodumudi KN, Weber A, Sarnaik AA, et al. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma[J]. J Immunol,2012,189(11):5147-5154.
    [27] Michels T, Shurin GV, Naiditch H, et al. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner[J]. J Immunotoxicol,2012,9(3):292-300.
    [28] Alizadeh D, Trad M, Hanke NT, et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J]. Cancer Res,2014,74(1):104-118.
    [29] Mikysková R, Indrová M, Vlková V, et al. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment[J]. J Leukoc Biol,2014,95(5):743-753.
    [30] Mikysková R, Indrová M, Pollaková V, et al. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors[J]. J Immunother,2012,35(5):374-384.
  • [1] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [2] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
    [3] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [4] 费永和, 崔俐俊, 陈静.  应急状态下药品专利强制许可的几点思考 . 药学实践与服务, 2024, 42(7): 1-5. doi: 10.12206/j.issn.2097-2024.202309047
    [5] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [6] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [7] 毛泽玲, 文波.  大黄的HPLC指纹图谱及禁用农药的残留研究 . 药学实践与服务, 2024, 42(7): 1-9. doi: 10.12206/j.issn.2097-2024.202310057
    [8] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [9] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [10] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [11] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 1-6. doi: 10.12206/j.issn.2097-2024.202312054
    [12] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [13] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [14] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [15] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [16] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [17] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202310044
    [18] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [19] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [20] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(7): 1-7. doi: 10.12206/j.issn.2097-2024.202303023
  • 加载中
计量
  • 文章访问数:  2855
  • HTML全文浏览量:  225
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 修回日期:  2015-01-26

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

doi: 10.3969/j.issn.1006-0111.2015.02.019
    基金项目:  国家科技重大专项资助项目(No.2013ZX10002-010-007)

摘要: 肿瘤相关免疫抑制性细胞在肿瘤的发生、发展过程中发挥重要的免疫抑制作用,肿瘤的发展和转移常伴有这些细胞的异常聚集。调节性T细胞(regulatory T cells, Treg)和髓系来源的抑制性细胞(myeloid-derived suppressor cells,MDSC)是免疫抑制性细胞网络的主要成分,它们通过直接或间接作用负向调节其他免疫细胞,抑制抗肿瘤的免疫反应。最新研究显示,有些常规化疗药物除可直接杀伤肿瘤细胞外,还可降低Treg和MDSC的数量,抑制其功能,从而增强抗肿瘤免疫功能。因此,将化疗药物作为预处理方案,凭借其免疫调节作用联合后续的过继性细胞免疫治疗可有效增强抗肿瘤免疫应答。化学免疫治疗策略将改变人们对传统化疗抗肿瘤地位的认识,继而更加合理地应用化疗药物。

English Abstract

蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
引用本文: 蒋琦, 钱其军. 化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展[J]. 药学实践与服务, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
Citation: JIANG Qi, QIAN Qijun. Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(2): 163-166,182. doi: 10.3969/j.issn.1006-0111.2015.02.019
参考文献 (30)

目录

    /

    返回文章
    返回