留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

乳腺癌靶向治疗的新策略

黄景彬 钟延强

黄景彬, 钟延强. 乳腺癌靶向治疗的新策略[J]. 药学实践与服务, 2011, 29(5): 324-327.
引用本文: 黄景彬, 钟延强. 乳腺癌靶向治疗的新策略[J]. 药学实践与服务, 2011, 29(5): 324-327.
HUANG Jing-bin, ZHONG Yan-qiang. New treatment strategies for targeted therapy of breast cancer[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(5): 324-327.
Citation: HUANG Jing-bin, ZHONG Yan-qiang. New treatment strategies for targeted therapy of breast cancer[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(5): 324-327.

乳腺癌靶向治疗的新策略

New treatment strategies for targeted therapy of breast cancer

  • 摘要: 目前,乳腺癌的常规治疗手段如化疗、放疗等存在严重的全身副作用,为此,开展乳腺癌的靶向治疗研究具有重大意义。本文综述了乳腺癌靶向治疗的3个研究领域:抗体介导的靶向、微载体介导的靶向、乳腺癌干细胞靶向,并阐述这些治疗策略的基本研究思路,分析这些新的治疗策略面临的一些问题,从而提出解决这些问题的相关见解。
  • [1] Normanno N, Morabito A, De Luca A, et al. Target-based therapies in breast cancer: current status and future perspectives[J]. Endocr Relat Cancer, 2009, 16 (3): 675.
    [2] Aesoy R, Sanchez BC, Norum JH, et al. An autocrine VEGF/VEGFR-2 and p38 signaling loop confers resistance to 4-hydroxytamoxifen in MCF-7 breast cancer cells[J]. Mol Cancer Res, 2008, 6 (10): 1630.
    [3] Le XF, Mao W, Lu C, et al. Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2[J]. Cell Cycle, 2008, 7 (23): 3747.
    [4] Rosen LS. VEGF-targeted therapy: therapeutic potential and recent advances[J]. Oncologist, 2005, 10 (6): 382.
    [5] Cesare G, PaoloM, Antonio R, et al. The role of bevacizumab in the treatment of non-small cell lung cancer: current Indications and future developments[J]. The Oncologist, 2007, 12 (10) : 1183.
    [6] Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for matastatic breast cancer[J]. N Engl J Med, 2007, 357 (26): 2666.
    [7] Park JW,Neve RM, Szollosi J,et al. Unraveling the biologic and clinical comp lexities of HER2[J]. Clin Breast Cancer, 2008, 8 (5) : 392.
    [8] Freudenberg JA,Wang Q, Katsumata M, et al. The role of HER2 in early breast cancermetastasis and the origins of resistance to HER2-targeted therapies[J]. Exp Mol Pathol, 2009, 87 (1) : 1.
    [9] SpectorNL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor-2 positive breast cancer[J]. J Clin Oncol, 2009, 27 (34) : 5838.
    [10] Jones KL, Buzdar AU. Evolving novel anti-HER2 strategies[J]. Lancet Oncol, 2009, 10 (12) : 1179.
    [11] Modi S, Sugarman S, Stopeck A, et al. Phase II trial of the HSP90 inhibitor tanesp imycin (Tan) + trastuzumab (T) in patients ( pts) with HER2-positive metastatic breast cancer (MBC) [J]. J ClinOncol, 2008, 26 (5) : 1027.
    [12] Mulik RS, Mnkknen J, Juvonen RO, et al. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis[J]. Int J Pharm, 2010, 398 (1-2): 190.
    [13] Zheng Y, Yu B, Weecharangsan W,et al. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α-APTADD to breast cancer cells[J]. Int J Pharm, 2010, 390 (2): 234.
    [14] Acharya S,Dilnawaz F, Sahoo SK, et al. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy[J]. Biomaterials, 2009, 30 (29): 5737.
    [15] Yu DH, Lu Q, Xie J, et al. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature[J]. Biomaterials, 2010, 31 (8): 2278.
    [16] Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell, 2009, 138 (4): 645.
    [17] Riccioni R, Dupuis ML, Bernabei M, et al. The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor[J]. Blood Cells Mol Dis, 2010, 45 (1): 86.
    [18] Fuchs D, Heinold A, Opelz G, et al. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells[J]. Biochem Biophys Res Commun, 2009 , 390 (3): 743.
    [19] Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancercells to chemotherapy[J]. J Natl Cancer Inst, 2008, 100 (9): 672.
    [20] Cameron D, Casey M, Press M, et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses[J]. Breast Cancer Res Treat, 2008, 112: 533.
    [21] Liu Y, Lu WL, Guo J, et al. A potential target associated with both cancer and cancer stem cells: a combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes[J] J Control Release, 2008, 129 (1): 18.
    [22] Zhou J, Zhang H, Gu P, et al. NF-kB pathway inhibitors preferentially inhibit breast cancer stem-like cells[J]. Breast Cancer Res Treat, 2008, 111 (3): 419.
    [23] Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission[J]. Cancer Res, 2009, 69 (19): 7507.
    [24] Anisimov VN, Egormin PA, Piskunova TS, et al. Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo[J]. Cell Cycle, 2010, 9 (1): 188.
    [25] Liu B, Fan Z, Edgerton SM, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells[J]. Cell Cycle, 2009, 8(13): 2031.
    [26] Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100 (7): 3983.
    [27] Wright MH, Calcagno AM, Salcido CD, et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics[J]. Breast Cancer Res, 2008, 10 (1): R10.
    [28] Hwang-Verslues WW, Kuo WH, Chang PH, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers[J]. PLoS One, 2009, 4 (12): e8377.
    [29] Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell, 2007, 1 (5): 555.
    [30] Pece S, Tosoni D, Confalonieri S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content[J]. Cell, 2010, 40 (1): 62.
  • [1] 王宏播, 卞康晴, 郭灵怡, 代宇, 俞媛.  外泌体用于疾病诊疗和药物递送的研究进展 . 药学实践与服务, 2023, 41(5): 265-272, 320. doi: 10.12206/j.issn.2097-2024.202207022
    [2] 张敏, 汪晓河, 周阳云, 石美智, 韩忻云, 韩向晖, 陈君君.  基于网络药理学和分子对接的苦参抗乳腺癌潜在机制研究 . 药学实践与服务, 2023, 41(12): 722-732. doi: 10.12206/j.issn.2097-2024.202302001
    [3] 马小雨, 罗彩萍, 刘悦.  代谢组学在乳腺癌诊疗中应用的研究进展 . 药学实践与服务, 2023, 41(3): 139-145. doi: 10.12206/j.issn.2097-2024.202109112
    [4] 雷碧黠, 张梦瑶, 陈晓锐, 梁蓓蓓, 解伟, 王华菁, 李博华.  表没食子儿茶素没食子酸酯联合曲妥珠单抗对HER2过表达乳腺癌细胞增殖的影响及其机制 . 药学实践与服务, 2022, 40(2): 136-142. doi: 10.12206/j.issn.1006-0111.202112035
    [5] 周菊香, 王双英, 佘建涛, 曾贤良, 张继红.  肾衰竭对乳腺癌患者多西他赛暴露和不良反应的影响 . 药学实践与服务, 2022, 40(6): 571-575. doi: 10.12206/j.issn.2097-2024.202203068
    [6] 王玮婷, 殷雪琴, 夏金娥, 张夏炎.  五味子乙素通过ROS介导内质网应激诱导人乳腺癌MDA-MB-231细胞凋亡的研究 . 药学实践与服务, 2021, 39(6): 499-503, 533. doi: 10.12206/j.issn.1006-0111.202106123
    [7] 周瑾, 李盛建, 覃福礼, 杨新颖, 张晓琳, 赵亮.  月腺大戟素A通过干扰PKD1介导的MEK/ERK和PI3K/AKT信号通路抑制乳腺癌细胞增殖的研究 . 药学实践与服务, 2020, 38(3): 241-244, 276. doi: 10.12206/j.issn.1006-0111.201912008
    [8] 曹青青, 李盛建, 李云青, 葛继云, 陈俊, 周瑾, 钱跹, 赵亮.  月腺大戟的化学成分及其乳腺癌细胞毒活性研究 . 药学实践与服务, 2019, 37(4): 309-313,317. doi: 10.3969/j.issn.1006-0111.2019.04.005
    [9] 龚晓斌, 刘诗怡, 夏天一, 位华, 陈万生.  阿帕替尼在恶性肿瘤治疗中的临床应用与研究进展 . 药学实践与服务, 2018, 36(2): 103-107,130. doi: 10.3969/j.issn.1006-0111.2018.02.002
    [10] 唐杰, 林厚文, 孙凡.  海绵来源的smenospongine诱导乳腺癌MCF7细胞凋亡机制研究 . 药学实践与服务, 2018, 36(5): 399-402,421. doi: 10.3969/j.issn.1006-0111.2018.05.004
    [11] 王筱婧, 王东兴, 范洁, 高越, 张海.  泽漆抑制三阴乳腺癌MDA-MB-231细胞及其凋亡机制研究 . 药学实践与服务, 2017, 35(4): 337-340,358. doi: 10.3969/j.issn.1006-0111.2017.04.012
    [12] 齐婧.  阿瑞匹坦对乳腺癌AC方案化疗后中重度呕吐患者的二级预防 . 药学实践与服务, 2017, 35(2): 158-160,181. doi: 10.3969/j.issn.1006-0111.2017.02.015
    [13] 赵佳丽, 陈秋红, 李红娜, 曾莉莉, 叶永贤, 费燕.  神经病理性疼痛的药物治疗进展 . 药学实践与服务, 2016, 34(4): 309-312. doi: 10.3969/j.issn.1006-0111.2016.04.006
    [14] 郑婷, 钱其军.  替吉奥治疗晚期乳腺癌的研究进展 . 药学实践与服务, 2015, 33(6): 557-560. doi: 10.3969/j.issn.1006-0111.2015.06.021
    [15] 杨喜晶, 周福平, 张迁, 钱其军.  化疗药物治疗双原发肿瘤继发急性白血病1例及文献复习 . 药学实践与服务, 2015, 33(5): 453-456. doi: 10.3969/j.issn.1006-0111.2015.05.020
    [16] 于淼, 毛峻琴.  基因miRNA-34a靶向纳米复合物抗前列腺癌细胞增殖的作用研究 . 药学实践与服务, 2015, 33(6): 539-543. doi: 10.3969/j.issn.1006-0111.2015.06.016
    [17] 陈婷, 鲁莹.  载抗肿瘤药物纳米靶向给药系统的研究进展 . 药学实践与服务, 2011, 29(3): 176-178,196.
    [18] 王晶, 赵娜萍, 舒丽芯, 刘斌, 张婉露, 严天虹, 潘勇华, 张黎.  参麦注射液联合TE化疗方案治疗进展期乳腺癌的临床观察研究 . 药学实践与服务, 2011, 29(3): 184-187,203.
    [19] 薛龙, 孙爱军.  恶性肿瘤靶向治疗方法的进展及应用 . 药学实践与服务, 2008, (2): 81-83.
    [20] 赵强, 常英, 潘靖, 张军东.  云硒冲剂对乳腺癌术后化疗患者免疫功能的影响 . 药学实践与服务, 2004, (3): 156-157.
  • 加载中
计量
  • 文章访问数:  2665
  • HTML全文浏览量:  267
  • PDF下载量:  548
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-30
  • 修回日期:  2011-03-17

乳腺癌靶向治疗的新策略

摘要: 目前,乳腺癌的常规治疗手段如化疗、放疗等存在严重的全身副作用,为此,开展乳腺癌的靶向治疗研究具有重大意义。本文综述了乳腺癌靶向治疗的3个研究领域:抗体介导的靶向、微载体介导的靶向、乳腺癌干细胞靶向,并阐述这些治疗策略的基本研究思路,分析这些新的治疗策略面临的一些问题,从而提出解决这些问题的相关见解。

English Abstract

黄景彬, 钟延强. 乳腺癌靶向治疗的新策略[J]. 药学实践与服务, 2011, 29(5): 324-327.
引用本文: 黄景彬, 钟延强. 乳腺癌靶向治疗的新策略[J]. 药学实践与服务, 2011, 29(5): 324-327.
HUANG Jing-bin, ZHONG Yan-qiang. New treatment strategies for targeted therapy of breast cancer[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(5): 324-327.
Citation: HUANG Jing-bin, ZHONG Yan-qiang. New treatment strategies for targeted therapy of breast cancer[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(5): 324-327.
参考文献 (30)

目录

    /

    返回文章
    返回