留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

载抗肿瘤药物纳米靶向给药系统的研究进展

陈婷 鲁莹

陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
引用本文: 陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.
Citation: CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.

载抗肿瘤药物纳米靶向给药系统的研究进展

Study on targeted nanoparticles for anticancer therapy

  • 摘要: 利用纳米微粒作为小分子抗肿瘤药物靶向传递系统的研究正在快速的发展和进行中,将抗肿瘤药物用各种不同材料的纳米微粒包裹,可以有助于提高其水溶性,增加肿瘤组织中的药物分布,以及加强抗肿瘤活性,同时减小对其他组织器官的非特异性毒性。此类研究主要集中在如何使得抗肿瘤药物在靶向肿瘤组织部位释放传递以及限制其对健康组织器官的影响,本文从当今常见纳米载药系统的类型以及肿瘤细胞靶向、肿瘤微环境靶向以及肿瘤转移灶靶向等多方面综述载抗肿瘤药物纳米微粒传递系统的研究进展。
  • [1] Dreher MR, Liu W, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers[J]. Natl Cancer Inst,2006,98(5):335.
    [2] Nomura T, Koreeda N, Yamashita F, et al. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissueisolated tumors[J]. Pharm Res,1998,15(1):128.
    [3] Soundararajan A, Bao A, Phillips WT, et al.[186Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model [J]. Nucl Med Biol,2009,36(5):515.
    [4] Rosenthal E, Poizot-Martin I, Saint-Marc T, et al. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma[J]. Am J Clin Oncol,2002,25(1): 57.
    [5] Rawat M, Singh D, Saraf S,et al. Nanocarriers: promising vehicle for bioactive[J]. Biol Pharm Bull,2006,29(9):1790.
    [6] Zhan CY, Gu B, Xie C,et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect[J]. J Control Release,2010,143(1):136.
    [7] Manchester M,Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging[J]. Adv Drug Deliv Rev,2006,58(14):1505.
    [8] Singh P,Destito G,Schneemann A,et al. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting[J]. J Nanobiotechnology,2006,4:2.
    [9] Matsumura Y,Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res,1986, 46(12):6387.
    [10] Thierry B. Drug nanocarriers and functional nanoparticles: applications in cancer therapy[J]. Curr Drug Deliv,2009,6(4):391.
    [11] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nat Rev Cancer ,2005,5(3): 161.
    [12] Sapra P,Tyaqi P,Allen TM.Ligand-targeted liposomes for cancer treatment[J]. Curr Drug Deliv,2005, 2(4):369.
    [13] Sapra P,Moase EH,Ma J,et al. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for lipo-somal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab' fragments[J]. Clin Cancer Res,2004,10(3):1100.[14] Sugano M,Eqilmez NK,Yokota SJ,et al. Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice[J]. Cancer Res.2000, 60,(24):6942.[15] Goren D,Horowitz AT,Zalipsky S, et al. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies[J]. Br J Cancer,1996, 74(11):1749.[16] Heidel JD,Yu Z,Liu JY,et al. Administration in non-human primates ofescalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA[J]. Proc Natl Acad Sci USA,2007,104(14):5715.[17] Karmali PP,Kotamraju VR,Kastantin M,et al. Targeting of albumin-embedded paclitaxel nanoparticles to tumors[J]. J Nanomedicine,2009, 5(1): 73.[18] Agemy L,Suqahara KN,Kotamraju VR,et al. Nanoparticle-induced vascular blockade in human prostate cancer[J]. Blood,2010,116(15):2847.[19] Blasi F, Carmeliet P. uPAR: a versatile signaling orchestrator[J]. Nat Rev Mol. Cell Biol,2002,3(12):932.[20] Nguyen DX,Bos PD,Massague J. Metastasis: from dissemination to organ specific colonization[J]. Nat Rev Cancer,2009,9(4):274.[21] Garg A,Tisdale AW,Haidari E,et al. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide[J]. Int J Pharm,2009,366(1-2):201.[22] Elazar V,Adwan H,Buerle T,et al. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis[J]. Int J Cancer,2010, 126(7):1749.[23] Galanzha EI, Kim JW,Zhaorov VP.Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells[J]. J Biophotonics,2009, 2(12):725.[24] Schluep T,Cheng J,Khin KT,et al. Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice[J]. Cancer Chemother Pharmacol,2006,57(5):654.[25] Schluep T,Hwang J,Hildebrandt IJ,et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements[J]. Proc Natl Acad Sci USA, 2009,106(27):11394.
  • [1] 王宏播, 卞康晴, 郭灵怡, 代宇, 俞媛.  外泌体用于疾病诊疗和药物递送的研究进展 . 药学实践与服务, 2023, 41(5): 265-272, 320. doi: 10.12206/j.issn.2097-2024.202207022
    [2] 王冬博, 聂晶, 武慧娜, 孙磊, 刘丽慧, 吴记勇.  铂类抗肿瘤药物耐药机制的研究进展和应对策略 . 药学实践与服务, 2022, 40(4): 302-308. doi: 10.12206/j.issn.1006-0111.202204046
    [3] 龚晓斌, 刘诗怡, 夏天一, 位华, 陈万生.  阿帕替尼在恶性肿瘤治疗中的临床应用与研究进展 . 药学实践与服务, 2018, 36(2): 103-107,130. doi: 10.3969/j.issn.1006-0111.2018.02.002
    [4] 韩凌, 孙治国, 鲁莹.  抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法 . 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
    [5] 成念, 赵文萃, 张琦, 王艳萍, 韩丹, 肖轩昂.  用疏水改性的白及多糖制备载紫杉醇纳米粒并对其表征 . 药学实践与服务, 2017, 35(1): 48-53. doi: 10.3969/j.issn.1006-0111.2017.01.012
    [6] 陈大中, 高洁, 解方园, 张翮, 鲁莹, 邹豪, 钟延强.  共载阿霉素和依克立达的PLGA纳米粒的制备及表征 . 药学实践与服务, 2017, 35(3): 219-223,251. doi: 10.3969/j.issn.1006-0111.2017.03.007
    [7] 朱冰, 盛丹丹, 李善心, 张黎.  盐霉素纳米制剂的研究进展 . 药学实践与服务, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
    [8] 李晏, 周莉芬, 张斌.  某院抗肿瘤药物临床应用调查分析 . 药学实践与服务, 2016, 34(1): 86-89. doi: 10.3969/j.issn.1006-0111.2016.01.023
    [9] 赵佳丽, 陈秋红, 李红娜, 曾莉莉, 叶永贤, 费燕.  神经病理性疼痛的药物治疗进展 . 药学实践与服务, 2016, 34(4): 309-312. doi: 10.3969/j.issn.1006-0111.2016.04.006
    [10] 苑旺, 王美玲, 石岩, 崔黎丽.  季铵化壳聚糖胰岛素纳米粒的制备、处方优化及其初步药效学实验 . 药学实践与服务, 2015, 33(4): 319-323. doi: 10.3969/j.issn.1006-0111.2015.04.008
    [11] 王欢, 佘岚, 王琳召, 马志强, 张欣荣, 杨峰.  氧化介孔碳球纳米粒作为紫杉醇载体的研究 . 药学实践与服务, 2015, 33(2): 114-118. doi: 10.3969/j.issn.1006-0111.2015.02.005
    [12] 于淼, 毛峻琴.  基因miRNA-34a靶向纳米复合物抗前列腺癌细胞增殖的作用研究 . 药学实践与服务, 2015, 33(6): 539-543. doi: 10.3969/j.issn.1006-0111.2015.06.016
    [13] 邵帅, 崔光华, 周旭, 高钟镐, 黄伟.  中心组合设计法优化载基因壳聚糖纳米粒的最佳转染制备区域 . 药学实践与服务, 2014, 32(6): 419-424. doi: 10.3969/j.issn.1006-0111.2014.06.006
    [14] 黄景彬, 钟延强.  乳腺癌靶向治疗的新策略 . 药学实践与服务, 2011, 29(5): 324-327.
    [15] 许洁, 王菊, 冯年平, 赵继会, 于燕燕, 谭蓉.  星点设计-效应面法优化冬凌草甲素聚乳酸纳米粒的制备工艺 . 药学实践与服务, 2009, 27(5): 345-348,369.
    [16] 薛龙, 孙爱军.  恶性肿瘤靶向治疗方法的进展及应用 . 药学实践与服务, 2008, (2): 81-83.
    [17] 王燕琼, 姜华, 陈敏玲, 李岚, 张春, 蒋樾廉.  几种常用抗肿瘤药物再配制后稳定性概况 . 药学实践与服务, 2007, (6): 401-403.
    [18] 罗琼, 何晖, 潘菡清.  抗肿瘤药物在驻济南部队医院的用药分析 . 药学实践与服务, 2002, (1): 32-33.
    [19] 李健和, 徐雯, 龙小华, 曾晓丹.  抗肿瘤药在输液中的稳定性及与其它药物的配伍变化 . 药学实践与服务, 1998, (6): 348-353.
    [20] 丁惠萍, 黄平.  抗肿瘤药物的药代动力学及血浓度测定 . 药学实践与服务, 1996, (1): 37-40.
  • 加载中
计量
  • 文章访问数:  2389
  • HTML全文浏览量:  222
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-09
  • 修回日期:  2011-05-08

载抗肿瘤药物纳米靶向给药系统的研究进展

摘要: 利用纳米微粒作为小分子抗肿瘤药物靶向传递系统的研究正在快速的发展和进行中,将抗肿瘤药物用各种不同材料的纳米微粒包裹,可以有助于提高其水溶性,增加肿瘤组织中的药物分布,以及加强抗肿瘤活性,同时减小对其他组织器官的非特异性毒性。此类研究主要集中在如何使得抗肿瘤药物在靶向肿瘤组织部位释放传递以及限制其对健康组织器官的影响,本文从当今常见纳米载药系统的类型以及肿瘤细胞靶向、肿瘤微环境靶向以及肿瘤转移灶靶向等多方面综述载抗肿瘤药物纳米微粒传递系统的研究进展。

English Abstract

陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
引用本文: 陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.
Citation: CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.
参考文献 (13)

目录

    /

    返回文章
    返回