留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

作为基因输送载体的壳聚糖衍生物研究进展

李晏

李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
引用本文: 李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.
Citation: LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.

作为基因输送载体的壳聚糖衍生物研究进展

Research progress of chitosan derivatives as gene delivery vector

  • 摘要: 壳聚糖作为基因载体,目前存在的主要问题是还不能达到足够高的表达效率。其中主要原因是壳聚糖在pH 7.4的生理环境下溶解度较差,壳聚糖与DNA形成的复合物在生理环境下的稳定性较差,缺乏细胞靶向性。本文综述了作为基因输送载体的壳聚糖衍生物研究进展,为进一步研究和开发壳聚糖衍生物提供依据和参考。
  • [1] Brus C, Petersen H, Aigner A, et al. Efficiency of polyethylenimines and polyethyleniminegraft-poly (ethylene glycol) block copolymers to protect oligonucleotides against enzymatic degradation[J]. Eur.J Pharm Biopharm, 2004, (57): 427.
    [2] Fischer D, Osburg B, Petersen H, et al. Effect of poly(ethyleneimine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice[J]. Drug Metab Dispos,2004, (32): 983.
    [3] Mao S, Neu M, Germershaus O, et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes[J]. Bioconjug Chem, 2006 ,(17) : 1209.
    [4] Kunath K, von Harpe A, Petersen H, et al. The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-kappaB decoy in mice[J].Pharm Res,2002, (19) : 810.
    [5] Zhang Y, Chen J, Zhang Y, et al. A novel PEGylation of chitosan nanoparticles for gene delivery[J].Biotechnol Appl Biochem, 2007 ,(46) :197.
    [6] Zhang H, Mardyani S, Chan WC, et al.Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics[J]. Biomacromolecules,2006, (7) :1568.
    [7] Kim TH, Nah JW, Cho MH, et al. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles[J]. J Nanosci Nanotechnol,2006, (6) :2796.
    [8] Park IK, Kim TH, Park YH, et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier[J]. J Control Release,2001,(76): 349.
    [9] Mansouri S, Cuie Y, Winnik , et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy[J].Biomaterials,2006, (27) :2060..
    [10] Jiang H, Kwon J, Kim E, et al. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting[J]. J Control Release, 2008, (131) :150.
    [11] Schaffer DV, Lauffenburger DA, Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery[J]. J Biol Chem,1998, (273) :28004.
    [12] Benns JM, Choi JS, Mahato RI, et al. pH sensitive cationic polymer gene delivery vehicle: N-Acpoly( L-histidine)-graft-poly(L-lysine) comb shaped polymer[J]. Bioconjug Chem,2000, (11): 637.
    [13] Li W, Nicol F, Szoka Jr FC, GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery[J]. Adv Drug Deliv Rev, 2004, (56) :967.
    [14] Wagner E, Effects of membrane-active agents in gene delivery[J].J Control Release, 1998, (53) :155.
    [15] Jones RA, Cheung CY, Black FE, et al. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pHsensitive disruption of endosomal vesicles[J]. Biochem J, 2003, (372) :65.
    [16] Kim TH, Kim SI, Akaike T, et al. Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes[J].J Control Release, 2005, (105) :354.
    [17] Thanou M, Florea BI, Geldof M, et al. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines[J]. Biomaterials, 2002, (23): 153.
    [18] Mao S, Shuai X, Unger F, et al. Synthesis, characterization and cytotoxicity of poly (ethylene glycol)-graft-trimethyl chitosan block copolymers[J]. Biomaterials, 2005,(26) : 6343.
    [19] Satoh T, Kano H, Nakatani M, et al. 6-Amino-6-deoxy chitosan. Sequential chemical modifications at the C-6 positions of N-phthaloylchitosan and evaluation as a gene carrier[J].Carbohydr Res,. 2006, (341) : 2406.
    [20] Park IK, Ihm JE, Park YH, et al. Galactosylated chitosan(GC)-graftpoly(vinyl pyrrolidone) (PVP) as hepatocytetargeting DNA carrier: preparation and physicochemical characterization of GCgraft-PVP/DNA complex (1) [J]. J Control Release,2003, (86) : 349.
    [21] Wong K, Sun G, Zhang X, et al. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo[J].Bioconjug Chem,2006, (17) : 152.
    [22] Kurisawa M, Yokoyama M, Okano T, Transfection efficiency increases by incorporating hydrophobicmonomer units into polymeric gene carriers[J].J Control Release,2000, (68) : 1.
    [23] Kim YH, Gihm SH, Park CR, et al. Structural characteristics of size-controlled self aggregates of deoxycholic acidmodified chitosan and their application as a DNA delivery carrier[J].Bioconjugate Chem,2001 ,(12) : 932.
    [24] Liu WG, Zhang X, Sun SJ, et al. N-alkylated chitosan as a potential nonviral vector for gene transfection[J]. Bioconjugate Chem,2003, (14) : 782.
    [25] Hu F, Zhao M, Yuan H, et al. A novel chitosan oligosaccharidestearic acid micelles for gene delivery: properties and in vitro transfection studies[J]. Int J Pharm,2006,(315) : 158.
    [26] Mao Z, Ma L, Yan J, et al. The gene transfection efficiency of thermoresponsive N, N, N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer[J]. Biomaterials,2007, (28) : 4488.
  • [1] 陆诚, 姜玉, 彭程, 杨丽君, 谢和辉.  二氯乙酸钠的医学研究进展 . 药学实践与服务, 2023, 41(8): 455-458, 477. doi: 10.12206/j.issn.2097-2024.202105132
    [2] 温萍, 张俊平.  隐丹参酮及其衍生物抗肿瘤活性研究进展 . 药学实践与服务, 2023, 41(4): 207-211. doi: 10.12206/j.issn.2097-2024.202208090
    [3] 张晶, 顾永卫, 武鑫.  适配体C2min介导的可靶向2种前列腺癌基因的递送系统 . 药学实践与服务, 2020, 38(1): 47-51,66. doi: 10.3969/j.issn.1006-0111.201906038
    [4] 李修政, 赵庆杰, 董家潇, 姜云云, 叶光明.  青藤碱结构改造的研究进展 . 药学实践与服务, 2018, 36(3): 204-209,214. doi: 10.3969/j.issn.1006-0111.2018.03.003
    [5] 李修政, 赵庆杰, 董家潇, 姜云云, 叶光明.  1位芳基取代的青藤碱衍生物的合成和抗炎活性研究 . 药学实践与服务, 2018, 36(5): 417-421. doi: 10.3969/j.issn.1006-0111.2018.05.007
    [6] 郑巍, 曹旭芳, 张开霞, 孙亮, 金永生, 郭良君.  红景天苷衍生物的合成及其抗疲劳活性研究 . 药学实践与服务, 2018, 36(1): 61-63,67. doi: 10.3969/j.issn.1006-0111.2018.01.012
    [7] 付奔, 田云桃, 丁力, 吴秋业, 郭忠武, 赵庆杰.  13-酰胺基取代苦参碱衍生物的合成及抗肿瘤活性研究 . 药学实践与服务, 2017, 35(1): 12-16. doi: 10.3969/j.issn.1006-0111.2017.01.004
    [8] 陈松, 王彧杰, 王欢, 原永芳.  依托泊苷壳聚糖胶束的制备及壳聚糖促进依托泊苷肠吸收作用的研究 . 药学实践与服务, 2017, 35(3): 243-247. doi: 10.3969/j.issn.1006-0111.2017.03.012
    [9] 向婧洁, 钟延强, 陆一鸣, 鲁莹.  负载pVAX1-wapA的壳聚糖及季铵化壳聚糖纳米粒的制备研究 . 药学实践与服务, 2016, 34(1): 19-23,40. doi: 10.3969/j.issn.1006-0111.2016.01.006
    [10] 于淼, 毛峻琴.  基因miRNA-34a靶向纳米复合物抗前列腺癌细胞增殖的作用研究 . 药学实践与服务, 2015, 33(6): 539-543. doi: 10.3969/j.issn.1006-0111.2015.06.016
    [11] 邵帅, 崔光华, 周旭, 高钟镐, 黄伟.  中心组合设计法优化载基因壳聚糖纳米粒的最佳转染制备区域 . 药学实践与服务, 2014, 32(6): 419-424. doi: 10.3969/j.issn.1006-0111.2014.06.006
    [12] 胡晓, 胡容峰, 白中稳.  聚乙烯醇衍生物作为水凝胶材料的应用研究进展 . 药学实践与服务, 2013, 31(3): 169-172,180. doi: 10.3969/j.issn.1006-0111.2013.03.002
    [13] 王庭芳, 郑莉萍, 张宁, 金磊, 吴秋业, 张川.  丹参素衍生物的研究进展 . 药学实践与服务, 2011, 29(2): 83-88.
    [14] 廖俊, 刘超美.  依布硒啉及衍生物的药理作用和构效关系研究进展 . 药学实践与服务, 2010, 28(2): 84-87,104.
    [15] 祝芳.  环糊精及其衍生物在手性药物分离分析中的应用 . 药学实践与服务, 2010, 28(2): 94-96,111.
    [16] 廖洪利, 苏春丽, 王伟新, 杨倩.  抗肿瘤青蒿素衍生物的研究 . 药学实践与服务, 2009, 27(2): 84-86.
    [17] 孙继平, 陶金凤.  复方氧氟沙星涂膜剂的制备与临床疗效观察 . 药学实践与服务, 2006, (5): 283-285.
    [18] 李月, 樊军文, 陈志龙.  叶绿素衍生物的生物活性研究进展 . 药学实践与服务, 2001, (5): 266-269.
    [19] 王晓华, 鄢立刚, 陈芳.  甲壳素及其衍生物作为药用辅料的应用进展 . 药学实践与服务, 2000, (2): 86-88.
    [20] 李眉.  红霉素衍生物的研究进展 . 药学实践与服务, 1993, (1): 2-5.
  • 加载中
计量
  • 文章访问数:  1922
  • HTML全文浏览量:  142
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-20
  • 修回日期:  2010-10-21

作为基因输送载体的壳聚糖衍生物研究进展

摘要: 壳聚糖作为基因载体,目前存在的主要问题是还不能达到足够高的表达效率。其中主要原因是壳聚糖在pH 7.4的生理环境下溶解度较差,壳聚糖与DNA形成的复合物在生理环境下的稳定性较差,缺乏细胞靶向性。本文综述了作为基因输送载体的壳聚糖衍生物研究进展,为进一步研究和开发壳聚糖衍生物提供依据和参考。

English Abstract

李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
引用本文: 李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.
Citation: LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.
参考文献 (26)

目录

    /

    返回文章
    返回