[1] HARDING C, HEUSER J, STAHL P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes[J]. J Cell Biol,1983,97(2):329-339. doi:  10.1083/jcb.97.2.329
[2] PAN B T, TENG K, WU C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J]. J Cell Biol,1985,101(3):942-948. doi:  10.1083/jcb.101.3.942
[3] GANGODA L, BOUKOURIS S, LIEM M, et al. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic?[J]. Proteomics, 2015, 15(2-3): 260-271.
[4] ISOLA A L, CHEN S. Exosomes: the messengers of health and disease[J]. Curr Neuropharmacol,2017,15(1):157-165. doi:  10.2174/1570159X14666160825160421
[5] ZHANG Y, LIU Y F, LIU H Y, et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell Biosci,2019,9:19. doi:  10.1186/s13578-019-0282-2
[6] KAHLERT C, KALLURI R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med (Berl),2013,91(4):431-437. doi:  10.1007/s00109-013-1020-6
[7] VAN NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol,2018,19(4):213-228. doi:  10.1038/nrm.2017.125
[8] ZAROVNI N, CORRADO A, GUAZZI P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches[J]. Methods,2015,87:46-58. doi:  10.1016/j.ymeth.2015.05.028
[9] JEPPESEN D K, HVAM M L, PRIMDAHL-BENGTSON B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation[J]. J Extracell Vesicles,2014,3:25011. doi:  10.3402/jev.v3.25011
[10] GUPTA S, RAWAT S, ARORA V, et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells[J]. Stem Cell Res Ther,2018,9(1):180. doi:  10.1186/s13287-018-0923-0
[11] LI P, KASLAN M, LEE S H, et al. Progress in exosome isolation techniques[J]. Theranostics,2017,7(3):789-804. doi:  10.7150/thno.18133
[12] BUSATTO S, VILANILAM G, TICER T, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid[J]. Cells,2018,7(12):273. doi:  10.3390/cells7120273
[13] BATRAKOVA E V, KIM M S. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release,2015,219:396-405. doi:  10.1016/j.jconrel.2015.07.030
[14] RUIVO C F, ADEM B, SILVA M, et al. The biology of cancer exosomes: insights and new perspectives[J]. Cancer Res,2017,77(23):6480-6488. doi:  10.1158/0008-5472.CAN-17-0994
[15] RYU K J, LEE J Y, PARK C, et al. Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation[J]. Ann Lab Med,2020,40(3):253-258. doi:  10.3343/alm.2020.40.3.253
[16] TÖGEL F, WEISS K, YANG Y, et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury[J]. Am J Physiol Renal Physiol,2007,292(5):F1626-F1635. doi:  10.1152/ajprenal.00339.2006
[17] NIU L J, ZHANG Y M, HUANG T, et al. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression[J]. Ann Transl Med,2021,9(2):137. doi:  10.21037/atm-20-7787
[18] CHEN L S, HUANG Y, DUAN Z X, et al. Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2[J]. Front Cell Dev Biol,2021,9:716209. doi:  10.3389/fcell.2021.716209
[19] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther,2019,10(1):98. doi:  10.1186/s13287-019-1204-2
[20] DAMANIA A, JAIMAN D, TEOTIA A K, et al. Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury[J]. Stem Cell Res Ther,2018,9(1):31. doi:  10.1186/s13287-017-0752-6
[21] NI Z H, KUANG L, CHEN H G, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis[J]. Cell Death Dis,2019,10(7):522. doi:  10.1038/s41419-019-1739-2
[22] CASADO J G, BLÁZQUEZ R, VELA F J, et al. Mesenchymal stem cell-derived exosomes: immunomodulatory evaluation in an antigen-induced synovitis porcine model[J]. Front Vet Sci,2017,4:39.
[23] QIN Y H, WANG L, GAO Z L, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo[J]. Sci Rep,2016,6:21961. doi:  10.1038/srep21961
[24] CHEN Y H, XUE K, ZHANG X D, et al. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells[J]. Stem Cell Res Ther,2018,9(1):318. doi:  10.1186/s13287-018-1047-2
[25] HERGENREIDER E, HEYDT S, TRÉGUER K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol,2012,14(3):249-256. doi:  10.1038/ncb2441
[26] ONG S G, LEE W H, HUANG M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer[J]. Circulation, 2014, 130(11 Suppl 1): S60-S69.
[27] BI S J, WANG C Y, JIN Y W, et al. Correlation between serum exosome derived miR-208a and acute coronary syndrome[J]. Int J Clin Exp Med,2015,8(3):4275-4280.
[28] LAI R C, ARSLAN F, LEE M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res,2010,4(3):214-222. doi:  10.1016/j.scr.2009.12.003
[29] ZOU L Y, MA X K, LIN S, et al. Bone marrow mesenchymal stem cell-derived exosomes protect against myocardial infarction by promoting autophagy[J]. Exp Ther Med,2019,18(4):2574-2582.
[30] CHEN F, LI X L, ZHAO J X, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling[J]. In Vitro Cell Dev Biol Anim,2020,56(7):567-576. doi:  10.1007/s11626-020-00481-2
[31] JIANG Y, XIE H, TU W, et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p[J]. Am J Transl Res,2018,10(11):3529-3541.
[32] XIN H Q, LI Y, CUI Y S, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab,2013,33(11):1711-1715. doi:  10.1038/jcbfm.2013.152
[33] ZHANG Y L, CHOPP M, ZHANG Z G, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury[J]. Neurochem Int,2017,111:69-81. doi:  10.1016/j.neuint.2016.08.003
[34] CUI G H, WU J, MOU F F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J,2018,32(2):654-668. doi:  10.1096/fj.201700600R
[35] SALA FRIGERIO C, LAU P, SALTA E, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease[J]. Neurology,2013,81(24):2103-2106. doi:  10.1212/01.wnl.0000437306.37850.22
[36] KOJIMA R, BOJAR D, RIZZI G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment[J]. Nat Commun,2018,9(1):1305. doi:  10.1038/s41467-018-03733-8
[37] HANEY M J, KLYACHKO N L, ZHAO Y L, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy[J]. J Control Release,2015,207:18-30. doi:  10.1016/j.jconrel.2015.03.033
[38] ROCCARO A M, SACCO A, MAISO P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. J Clin Invest,2013,123(4):1542-1555. doi:  10.1172/JCI66517
[39] ZHOU W Y, FONG M Y, MIN Y F, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell,2014,25(4):501-515. doi:  10.1016/j.ccr.2014.03.007
[40] WOLFERS J, LOZIER A, RAPOSO G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med,2001,7(3):297-303. doi:  10.1038/85438
[41] ALTIERI S L, KHAN A N H, TOMASI T B. Exosomes from plasmacytoma cells as a tumor vaccine[J]. J Immunother,2004,27(4):282-288. doi:  10.1097/00002371-200407000-00004
[42] BINENBAUM Y, FRIDMAN E, YAARI Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Res,2018,78(18):5287-5299. doi:  10.1158/0008-5472.CAN-18-0124
[43] YANG S J, CHE S P Y, KURYWCHAK P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer[J]. Cancer Biol Ther,2017,18(3):158-165. doi:  10.1080/15384047.2017.1281499
[44] THEODORAKI M N, YERNENI S S, HOFFMANN T K, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res,2018,24(4):896-905. doi:  10.1158/1078-0432.CCR-17-2664
[45] LUDWIG S, FLOROS T, THEODORAKI M N, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res,2017,23(16):4843-4854. doi:  10.1158/1078-0432.CCR-16-2819
[46] CHEN G, HUANG A C, ZHANG W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature,2018,560(7718):382-386. doi:  10.1038/s41586-018-0392-8
[47] PERETS N, BETZER O, SHAPIRA R, et al. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders[J]. Nano Lett,2019,19(6):3422-3431. doi:  10.1021/acs.nanolett.8b04148
[48] TIAN Y H, LI S P, SONG J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J]. Biomaterials,2014,35(7):2383-2390. doi:  10.1016/j.biomaterials.2013.11.083
[49] YANG T Z, MARTIN P, FOGARTY B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio[J]. Pharm Res,2015,32(6):2003-2014. doi:  10.1007/s11095-014-1593-y
[50] ALVAREZ-ERVITI L, SEOW Y, YIN H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol,2011,29(4):341-345. doi:  10.1038/nbt.1807
[51] KAMERKAR S, LEBLEU V S, SUGIMOTO H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. Nature,2017,546(7659):498-503. doi:  10.1038/nature22341
[52] SHTAM T A, KOVALEV R A, VARFOLOMEEVA E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro[J]. Cell Commun Signal,2013,11:88. doi:  10.1186/1478-811X-11-88
[53] LI S P, LIN Z X, JIANG X Y, et al. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools[J]. Acta Pharmacol Sin,2018,39(4):542-551. doi:  10.1038/aps.2017.178
[54] WANG X Y, ZHANG H Y, YANG H O, et al. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy[J]. Curr Cancer Drug Targets,2018,18(4):347-354. doi:  10.2174/1568009617666170710120311
[55] STERZENBACH U, PUTZ U, LOW L H, et al. Engineered exosomes as vehicles for biologically active proteins[J]. Mol Ther,2017,25(6):1269-1278. doi:  10.1016/j.ymthe.2017.03.030
[56] MANFREDI F, DI BONITO P, ARENACCIO C, et al. Incorporation of heterologous proteins in engineered exosomes[J]. Methods Mol Biol,2016,1448:249-260.
[57] ZHANG H Y, BAI M, DENG T, et al. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma[J]. Cancer Lett,2016,375(2):331-339. doi:  10.1016/j.canlet.2016.03.026
[58] LV L H, WAN Y L, LIN Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro[J]. J Biol Chem,2012,287(19):15874-15885. doi:  10.1074/jbc.M112.340588
[59] ZHANG Y J, LIU D Q, CHEN X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J]. Mol Cell,2010,39(1):133-144. doi:  10.1016/j.molcel.2010.06.010
[60] BERENGUER J, LAGERWEIJ T, ZHAO X W, et al. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8[J]. J Extracell Vesicles,2018,7(1):1446660. doi:  10.1080/20013078.2018.1446660
[61] GRANGE C, TAPPARO M, BRUNO S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging[J]. Int J Mol Med,2014,33(5):1055-1063. doi:  10.3892/ijmm.2014.1663
[62] RAYAMAJHI S, ARYAL S. Surface functionalization strategies of extracellular vesicles[J]. J Mater Chem B,2020,8(21):4552-4569. doi:  10.1039/D0TB00744G
[63] BAEK G, CHOI H, KIM Y, et al. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform[J]. Stem Cells Transl Med,2019,8(9):880-886. doi:  10.1002/sctm.18-0226
[64] RAMASUBRAMANIAN L, KUMAR P, WANG A J. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine[J]. Biomolecules,2019,10(1):48. doi:  10.3390/biom10010048
[65] VILLATA S, CANTA M, CAUDA V. EVs and bioengineering: from cellular products to engineered nanomachines[J]. Int J Mol Sci,2020,21(17):6048. doi:  10.3390/ijms21176048
[66] SUSA F, LIMONGI T, DUMONTEL B, et al. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine[J]. Cancers,2019,11(12):1979. doi:  10.3390/cancers11121979
[67] KIM M S, HANEY M J, ZHAO Y L, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations[J]. Nanomedicine,2018,14(1):195-204. doi:  10.1016/j.nano.2017.09.011
[68] CHEN L K, MIAO W, TANG X Y, et al. The expression and significance of neuropilin-1 (NRP-1) on glioma cell lines and glioma tissues[J]. J Biomed Nanotechnol,2013,9(4):559-563. doi:  10.1166/jbn.2013.1624
[69] TIAN T, ZHANG H X, HE C P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials,2018,150:137-149. doi:  10.1016/j.biomaterials.2017.10.012
[70] SMYTH T, PETROVA K, PAYTON N M, et al. Surface functionalization of exosomes using click chemistry[J]. Bioconjug Chem,2014,25(10):1777-1784. doi:  10.1021/bc500291r
[71] BISCANS A, HARASZTI R A, ECHEVERRIA D, et al. Hydrophobicity of lipid-conjugated siRNAs predicts productive loading to small extracellular vesicles[J]. Mol Ther,2018,26(6):1520-1528. doi:  10.1016/j.ymthe.2018.03.019
[72] VANDERGRIFF A, HUANG K, SHEN D L, et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J]. Theranostics,2018,8(7):1869-1878. doi:  10.7150/thno.20524
[73] PI F M, BINZEL D W, LEE T J, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression[J]. Nat Nanotechnol,2018,13(1):82-89. doi:  10.1038/s41565-017-0012-z
[74] LIANG Y J, DUAN L, LU J P, et al. Engineering exosomes for targeted drug delivery[J]. Theranostics,2021,11(7):3183-3195. doi:  10.7150/thno.52570
[75] LUAN X, SANSANAPHONGPRICHA K, MYERS I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin,2017,38(6):754-763. doi:  10.1038/aps.2017.12
[76] VAKHSHITEH F, ATYABI F, OSTAD S N. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy[J]. Int J Nanomedicine,2019,14:2847-2859. doi:  10.2147/IJN.S200036
[77] KOOIJMANS S A A, ALEZA C G, ROFFLER S R, et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting[J]. J Extracell Vesicles,2016,5:31053. doi:  10.3402/jev.v5.31053
[78] SHIMBO K, MIYAKI S, ISHITOBI H, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration[J]. Biochem Biophys Res Commun,2014,445(2):381-387. doi:  10.1016/j.bbrc.2014.02.007
[79] LIN Y, WU J H, GU W H, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Adv Sci (Weinh),2018,5(4):1700611. doi:  10.1002/advs.201700611
[80] SATO Y T, UMEZAKI K, SAWADA S, et al. Engineering hybrid exosomes by membrane fusion with liposomes[J]. Sci Rep,2016,6:21933. doi:  10.1038/srep21933
[81] MENTKOWSKI K I, SNITZER J D, RUSNAK S, et al. Therapeutic potential of engineered extracellular vesicles[J]. AAPS J,2018,20(3):50. doi:  10.1208/s12248-018-0211-z
[82] PIFFOUX M, SILVA A K A, WILHELM C, et al. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems[J]. ACS Nano,2018,12(7):6830-6842. doi:  10.1021/acsnano.8b02053
[83] KHONGKOW M, YATA T, BOONRUNGSIMAN S, et al. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration[J]. Sci Rep,2019,9(1):8278. doi:  10.1038/s41598-019-44569-6
[84] WANG J, CHEN P, DONG Y, et al. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy[J]. Biomaterials,2021,276:121056. doi:  10.1016/j.biomaterials.2021.121056
[85] CHENG G, LI W Q, HA L, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins[J]. J Am Chem Soc,2018,140(23):7282-7291. doi:  10.1021/jacs.8b03584
[86] PENG H, JI W H, ZHAO R C, et al. Exosome: a significant nano-scale drug delivery carrier[J]. J Mater Chem B,2020,8(34):7591-7608. doi:  10.1039/D0TB01499K