[1] KAI H H, WU Q Y, YIN R H, et al. LncRNA NORAD promotes vascular endothelial cell injury and atherosclerosis through suppressing VEGF gene transcription via enhancing H3K9 deacetylation by recruiting HDAC6[J]. Front Cell Dev Biol,2021,9:701628. doi:  10.3389/fcell.2021.701628
[2] FUSTER J J. Integrated stress response inhibition in atherosclerosis[J]. J Am Coll Cardiol,2019,73(10):1170-1172. doi:  10.1016/j.jacc.2019.01.015
[3] ZENG J F, TAO J, XIA L Z, et al. Melatonin inhibits vascular endothelial cell pyroptosis by improving mitochondrial function via up-regulation and demethylation of UQCRC1[J]. Biochem Cell Biol,2021,99(3):339-347. doi:  10.1139/bcb-2020-0279
[4] KLUGE M A, FETTERMAN J L, VITA J A. Mitochondria and endothelial function[J]. Circ Res,2013,112(8):1171-1188. doi:  10.1161/CIRCRESAHA.111.300233
[5] DYMKOWSKA D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria[J]. Mitochondrion,2021,57:131-147. doi:  10.1016/j.mito.2020.12.013
[6] YAO G H, QI J J, ZHANG Z Y, et al. Endothelial cell injury is involved in atherosclerosis and lupus symptoms in gld. apoE-/- mice[J]. Int J Rheum Dis,2019,22(3):488-496. doi:  10.1111/1756-185X.13458
[7] ZHANG X H, LU J Y, ZHANG Q H, et al. CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis[J]. Biol Res,2021,54(1):11. doi:  10.1186/s40659-021-00335-5
[8] LIU X Y, XU Y L, CHENG S B, et al. Geniposide combined with notoginsenoside r1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway[J]. Front Pharmacol,2021,12:687394. doi:  10.3389/fphar.2021.687394
[9] BIAN W H, JING X H, YANG Z Y, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis[J]. Aging,2020,12(7):6385-6400. doi:  10.18632/aging.103034
[10] MA Y Y, LIANG X R, LI C, et al. 5-HT 2A receptor and 5-HT degradation play a crucial role in atherosclerosis by modulating macrophage foam cell formation, vascular endothelial cell inflammation, and hepatic steatosis[J]. J Atheroscler Thromb,2022,29(3):322-336. doi:  10.5551/jat.58305
[11] DIKALOV S, ITANI H, RICHMOND B, et al. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension[J]. Am J Physiol Heart Circ Physiol,2019,316(3):H639-H646. doi:  10.1152/ajpheart.00595.2018
[12] JIANG W, GENG H Z, LV X Q, et al. Idebenone protects against atherosclerosis in apolipoprotein E-Deficient mice via activation of the SIRT3-SOD2-mtROS pathway[J]. Cardiovasc Drugs Ther,2021,35(6):1129-1145. doi:  10.1007/s10557-020-07018-5
[13] KATTOOR A J, POTHINENI N V K, PALAGIRI D, et al. Oxidative stress in atherosclerosis[J]. Curr Atheroscler Rep,2017,19(11):42. doi:  10.1007/s11883-017-0678-6
[14] ZENG J F, TAO J, XI L Z, et al. PCSK9 mediates the oxidative low-density lipoprotein-induced pyroptosis of vascular endothelial cells via the UQCRC1/ROS pathway[J]. Int J Mol Med,2021,47(4):53. doi:  10.3892/ijmm.2021.4886
[15] CHOY K W, LAU Y S, MURUGAN D, et al. Paeonol attenuates LPS-Induced endothelial dysfunction and apoptosis by inhibiting BMP4 and TLR4 signaling simultaneously but independently[J]. J Pharmacol Exp Ther,2018,364(3):420-432. doi:  10.1124/jpet.117.245217
[16] WANG D C, YE P, KONG C H, et al. Mitoferrin 2 deficiency prevents mitochondrial iron overload-induced endothelial injury and alleviates atherosclerosis[J]. Exp Cell Res,2021,402(1):112552. doi:  10.1016/j.yexcr.2021.112552
[17] CHEN L, HU L Q, LI Q, et al. Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation[J]. Acta Biochim Biophys Sin (Shanghai),2019,51(12):1233-1241. doi:  10.1093/abbs/gmz123
[18] WU Y, SONG F, LI Y D, et al. Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE-/ - Mice[J]. J Cell Mol Med,2021,25(1):521-534. doi:  10.1111/jcmm.16106
[19] LI S Z, HAO M H, WU T S, et al. Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis[J]. Biomed Pharmacother,2021,137:111419. doi:  10.1016/j.biopha.2021.111419
[20] HU F D, CHEN X, GAO J, et al. CircDIP2C ameliorates oxidized low-density lipoprotein-induced cell dysfunction by binding to miR-556-5p to induce TET2 in human umbilical vein endothelial cells[J]. Vascul Pharmacol,2021,139:106887. doi:  10.1016/j.vph.2021.106887
[21] WAN H, YOU T, LUO W. Circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis[J]. Front Cardiovasc Med,2021,8:646832. doi:  10.3389/fcvm.2021.646832
[22] ZHANG W, SUI Y. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells[J]. Mol Cell Biochem,2020,471(1-2):101-111. doi:  10.1007/s11010-020-03770-2
[23] MARCHIO P, GUERRA-OJEDA S, VILA J M, et al. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation[J]. Oxidative Med Cell Longev,2019,2019:8563845.
[24] FILOMENI G, De ZIO D, CECCONI F. Oxidative stress and autophagy: The clash between damage and metabolic needs[J]. Cell Death Differ,2015,22(3):377-388. doi:  10.1038/cdd.2014.150
[25] PATERGNANI S, BOUHAMIDA E, LEO S, et al. Mitochondrial oxidative stress and “mito-inflammation”: Actors in the diseases[J]. Biomedicines,2021,9(2):216. doi:  10.3390/biomedicines9020216
[26] YU S J, ZHANG L P, LIU C, et al. PACS2 is required for ox-LDL-induced endothelial cell apoptosis by regulating mitochondria-associated ER membrane formation and mitochondrial Ca2 + elevation[J]. Exp Cell Res,2019,379(2):191-202. doi:  10.1016/j.yexcr.2019.04.002
[27] HUANG M J, WEI R B, WANG Y, et al. The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission[J]. Redox Biol,2018,16:303-313. doi:  10.1016/j.redox.2018.03.010
[28] MAIESE K. Harnessing the power of SIRT1 and non-coding RNAs in vascular disease[J]. Curr Neurovasc Res,2017,14(1):82-88. doi:  10.2174/1567202613666161129112822
[29] HE X C, ZENG H, CHEN S T, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction[J]. J Mol Cell Cardiol,2017,112:104-113. doi:  10.1016/j.yjmcc.2017.09.007
[30] WU J, DENG Z Y, SUN M M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest,2020,100(4):643-656. doi:  10.1038/s41374-019-0332-8
[31] TSAI K L, HUNG C H, CHAN S H, et al. Chlorogenic acid protects against oxLDL-Induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells[J]. Mol Nutr Food Res,2018,62(11):e1700928. doi:  10.1002/mnfr.201700928
[32] FAN Y Z, CHENG Z L, MAO L J, et al. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles[J]. J Nanobiotechnol,2022,20(1):149. doi:  10.1186/s12951-022-01338-4
[33] NING R H, LI Y, DU Z, et al. The mitochondria-targeted antioxidant MitoQ attenuated PM 2.5-induced vascular fibrosis via regulating mitophagy[J]. Redox Biol,2021,46:102113. doi:  10.1016/j.redox.2021.102113
[34] WANG W, WU Q H, SUI Y, et al. Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome[J]. Biomed Pharmacother,2017,86:32-40. doi:  10.1016/j.biopha.2016.11.134
[35] QIN X, ZHANG J, WANG B, et al. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells[J]. Autophagy,2021,17(12):4266-4285. doi:  10.1080/15548627.2021.1911016
[36] HOU X H, YANG S B, YIN J. Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis[J]. Am J Physiol Cell Physiol,2019,316(1):C104-C110. doi:  10.1152/ajpcell.00313.2018
[37] TANG Y S, ZHAO Y H, ZHONG Y, et al. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway[J]. Inflamm Res,2019,68(9):727-738. doi:  10.1007/s00011-019-01256-6
[38] INCALZA M A, D'ORIA R, NATALICCHIO A, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases[J]. Vascul Pharmacol,2018,100:1-19. doi:  10.1016/j.vph.2017.05.005
[39] DING Z F, LIU S J, WANG X W, et al. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis[J]. Sci Rep,2013,3:1077. doi:  10.1038/srep01077
[40] GONG L L, LEI Y Y, LIU Y X, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling[J]. Am J Transl Res,2019,11(4):2140-2154.
[41] CHEN H I, HU W S, HUNG M Y, et al. Protective effects of luteolin against oxidative stress and mitochondrial dysfunction in endothelial cells[J]. Nutr Metab Cardiovasc Dis,2020,30(6):1032-1043. doi:  10.1016/j.numecd.2020.02.014
[42] BAI L N, YANG J H, ZHANG H, et al. PTB domain and leucine zipper motif 1 (APPL1) inhibits myocardial ischemia/hypoxia-reperfusion injury via inactivation of apoptotic protease activating factor-1 (APAF-1)/Caspase9 signaling pathway[J]. Bioengineered,2021,12(1):4385-4396. doi:  10.1080/21655979.2021.1954841
[43] KONG D X, HAN Y T, WANG C B, et al. Cytoprotective effects of oleanolic acid in human umbilical vascular endothelial cells is mediated via UCP2/ROS/Cytochrome C/AIF pathway[J]. J Cardiovasc Pharmacol,2016,67(4):344-350. doi:  10.1097/FJC.0000000000000360
[44] FÖRSTERMANN U, XIA N, LI H G. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis[J]. Circ Res,2017,120(4):713-735. doi:  10.1161/CIRCRESAHA.116.309326
[45] HE H, WANG L, QIAO Y, et al. Doxorubicin Induces Endotheliotoxicity and Mitochondrial Dysfunction via ROS/eNOS/NO Pathway[J]. Front Pharmacol,2020,10:1531. doi:  10.3389/fphar.2019.01531
[46] AKHIGBE R, AJAYI A. The impact of reactive oxygen species in the development of cardiometabolic disorders: A review[J]. Lipids Health Dis,2021,20(1):23. doi:  10.1186/s12944-021-01435-7
[47] SHAFIQUE E, TORINA A, REICHERT K, et al. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium[J]. Cardiovasc Res,2017,113(2):234-246. doi:  10.1093/cvr/cvw249
[48] CHEN X P, LI H W, WANG Z Q, et al. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHⅡ/eNOS/NO pathway[J]. Eur J Pharmacol,2020,868:172885. doi:  10.1016/j.ejphar.2019.172885
[49] RAO K N S, SHEN X G, PARDUE S, et al. Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II[J]. Redox Biol,2020,36:101650. doi:  10.1016/j.redox.2020.101650
[50] GALKIN I I, PLETJUSHKINA O Y, ZINOVKIN R A, et al. Mitochondria-Targeted Antioxidant SkQR1 Reduces TNF-Induced Endothelial Permeability in vitro[J]. Biochemistry (Mosc),2016,81(10):1188-1197. doi:  10.1134/S0006297916100163
[51] TSENG C Y, WANG J S, CHAO M W. Causation by diesel exhaust particles of endothelial dysfunctions in cytotoxicity, pro-inflammation, permeability, and apoptosis induced by ROS generation[J]. Cardiovasc Toxicol,2017,17(4):384-392. doi:  10.1007/s12012-016-9364-0