[1] 刘圣越, 王跃飞, 何永志, 等. 内生真菌对宿主植物生长和次级代谢产物影响研究进展[J]. 天津中医药大学学报, 2021, 40(1):128-136.
[2] DOS SANTOS I R, ABDEL-AZEEM A M, MOHESIEN M T, et al. Insights into the bioprospecting of the endophytic fungi of the medicinal plant Palicourea rigida kunth (Rubiaceae): detailed biological activities[J]. J Fungi (Basel),2021,7(9):689. doi:  10.3390/jof7090689
[3] 刘英孟, 张海燕, 汪镇朝, 等. 金线莲的研究进展[J]. 中成药, 2022, 44(1):186-192. doi:  10.3969/j.issn.1001-1528.2022.01.035
[4] 陈育青, 林艺华, 邹毅辉, 等. 金线莲生药鉴定、活性成分影响因素及药理作用研究进展[J]. 中成药, 2020, 42(8):2141-2144. doi:  10.3969/j.issn.1001-1528.2020.08.033
[5] 陈娟, 孟志霞, 邢咏梅, 等. 5种兰科药用植物可培养内生真菌的鉴定及多样性分析[J]. 中国药学杂志, 2017, 52(4):267-271.
[6] 王涵, 林清强, 胡雪娇, 等. 金线莲内生促生真菌的筛选及其促生机制探讨[J]. 福建师范大学学报(自然科学版), 2019, 35(3):72-79,95.
[7] ZHU Q, WU Y B, CHEN M, et al. Preinoculation with Endophytic fungus Phomopsis liquidambaris reduced rice bakanae disease caused by Fusarium proliferatum via enhanced plant resistance[J]. J Appl Microbiol,2022,133(3):1566-1580. doi:  10.1111/jam.15656
[8] 廖祖健. 两株金线莲内生真菌Annulohypoxylon cf. stygium (ARTCL-05)、Diaporthe sp. (ARL-09)中具有特异性激活ERα的活性成分研究[D]. 厦门: 厦门大学, 2017.
[9] 邓梦仪. 三株金线莲内生真菌次生代谢产物研究[D]. 武汉: 华中科技大学, 2021.
[10] HÜTTEL W, MÜLLER M. Regio- and stereoselective intermolecular oxidative phenol coupling in kotanin biosynthesis by Aspergillus niger[J]. Chembiochem,2007,8(5):521-529. doi:  10.1002/cbic.200600434
[11] ABDELWAHAB G M, MIRA A, CHENG Y B, et al. Acetylcholine esterase inhibitory activity of green synthesized nanosilver by naphthopyrones isolated from marine-derived Aspergillus niger[J]. PLoS One,2021,16(9):e0257071. doi:  10.1371/journal.pone.0257071
[12] SIRIWARDANE A M D A, KUMAR N S, JAYASINGHE L, et al. Chemical investigation of metabolites produced by an endophyticAspergillussp. isolated fromLimonia acidissima[J]. Nat Prod Res,2015,29(14):1384-1387. doi:  10.1080/14786419.2015.1025230
[13] SHAABAN M, SHAABAN K A, ABDEL-AZIZ M S. Seven naphtho-γ-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties[J]. Org Med Chem Lett,2012,2:6. doi:  10.1186/2191-2858-2-6
[14] HUA Y, PAN R, BAI X L, et al. Aromatic polyketides from a symbiotic strain Aspergillus fumigatus D and characterization of their biosynthetic gene D8. t287[J]. Mar Drugs,2020,18(6):324. doi:  10.3390/md18060324
[15] HE Y, TIAN J, CHEN X T, et al. Fungal naphtho-γ-pyrones: potent antibiotics for drug-resistant microbial pathogens[J]. Sci Rep,2016,6:24291. doi:  10.1038/srep24291
[16] FUKUDA T, HASEGAWA Y, HAGIMORI K, et al. Tensidols, new potentiators of antifungal miconazole activity, produced by Aspergillus niger FKI-2342[J]. J Antibiot (Tokyo),2006,59(8):480-485. doi:  10.1038/ja.2006.67
[17] CAMPOS F R, BARISON A, DAOLIO C, et al. Complete 1H and 13C NMR assignments of aurasperone A and fonsecinone A, two bis-naphthopyrones produced by Aspergillus aculeatus[J]. Magn Reson Chem,2005,43(11):962-965. doi:  10.1002/mrc.1654
[18] BOURAS N, MATHIEU F, COPPEL Y, et al. Aurasperone F - a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, Aspergillus nigerC-433[J]. Nat Prod Res,2005,19(7):653-659. doi:  10.1080/14786410412331286955
[19] ZHENG Y Y, LIANG Z Y, SHEN N X, et al. New naphtho-γ-pyrones isolated from marine-derived fungus Penicillium sp. HK1-22 and their antimicrobial activities[J]. Mar Drugs,2019,17(6):322. doi:  10.3390/md17060322
[20] 陈赞鸿, 朱静琳, 林灵茵, 等. 红树林内生真菌Aspergillus fumigatus SAS10二聚萘并吡喃酮类代谢产物研究[J]. 天然产物研究与开发, 2022, 34(6):967-974.
[21] QUANG T H, PHONG N V, ANH L N, et al. Secondary metabolites from a peanut-associated fungus Aspergillus niger IMBC-NMTP01 with cytotoxic, anti-inflammatory, and antimicrobial activities[J]. Nat Prod Res,2020,36(5):1215-1223.
[22] HAN J H, YANG N, WEI S Z, et al. Dimeric hexylitaconic acids from the marine-derived fungus Aspergillus welwitschiae CUGBMF180262[J]. Nat Prod Res,2022,36(2):578-585. doi:  10.1080/14786419.2020.1793152
[23] LI D H, HAN T, GUAN L P, et al. New naphthopyrones from marine-derived fungus Aspergillus niger 2HL-M-8 and their in vitro antiproliferative activity[J]. Nat Prod Res,2016,30(10):1116-1122. doi:  10.1080/14786419.2015.1043553
[24] TAKAGI M, MOTOHASHI K, HWANG J H, et al. New tensidols, JBIR-86 and JBIR-87, isolated from Aspergillus sp. fJ80[J]. J Antibiot (Tokyo),2010,63(7):371-373. doi:  10.1038/ja.2010.45
[25] LI W S, XIONG P, ZHENG W X, et al. Identification and antifungal activity of compounds from the mangrove endophytic fungus Aspergillus clavatus R7[J]. Mar Drugs,2017,15(8):259. doi:  10.3390/md15080259
[26] FRANDSEN R J N, NIELSEN N J, MAOLANON N, et al. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones[J]. Mol Microbiol,2006,61(4):1069-1080. doi:  10.1111/j.1365-2958.2006.05295.x
[27] XU D, YIN R Y, ZHOU Z Y, et al. Elucidation of ustilaginoidin biosynthesis reveals a previously unrecognised class of ene-reductases[J]. Chem Sci,2021,12(44):14883-14892. doi:  10.1039/D1SC02666F