[1] International Diabetic Federation. IDF Diabetes Atlas 2021[EB/OL]. (2021-11-08) [2022-04-16]. http://www.diabetesatlas.org/atlas/tenth-edition
[2] ZHANG P, ZHU L H, CAI J J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19[J]. Circ Res,2020,126(12):1671-1681. doi:  10.1161/CIRCRESAHA.120.317134
[3] CATALÁ-LÓPEZ F, MACÍAS SAINT-GERONS D, DE LA FUENTE HONRUBIA C, et al. Risks of dual blockade of the renin-angiotensin system compared with monotherapy: a systematic review and cumulative meta-analysis of randomized trials and observational studies[J]. Rev Esp Salud Publica,2014,88(1):37-65. doi:  10.4321/S1135-57272014000100004
[4] NAVARRO-GONZÁLEZ J F, MORA-FERNÁNDEZ C, MUROS DE FUENTES M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy[J]. Nat Rev Nephrol,2011,7(6):327-340. doi:  10.1038/nrneph.2011.51
[5] LUSTER A D. Chemokines: chemotactic cytokines that mediate inflammation[J]. N Engl J Med,1998,338(7):436-445. doi:  10.1056/NEJM199802123380706
[6] MOSER B, LOETSCHER P. Lymphocyte traffic control by chemokines[J]. Nat Immunol,2001,2(2):123-128. doi:  10.1038/84219
[7] SHI Y F, WANG Y, LI Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol,2018,14(8):493-507. doi:  10.1038/s41581-018-0023-5
[8] FADINI G P, BONORA B M, CAPPELLARI R, et al. Acute effects of linagliptin on progenitor cells, monocyte phenotypes, and soluble mediators in type 2 diabetes[J]. J Clin Endocrinol Metab,2016,101(2):748-756. doi:  10.1210/jc.2015-3716
[9] GIUNTI S, BARUTTA F, PERIN P C, et al. Targeting the MCP-1/CCR2 System in diabetic kidney disease[J]. Curr Vasc Pharmacol,2010,8(6):849-860. doi:  10.2174/157016110793563816
[10] PEREZ-GOMEZ M V, SANCHEZ-NIÑO M D, SANZ A B, et al. Targeting inflammation in diabetic kidney disease: early clinical trials[J]. Expert Opin Investig Drugs,2016,25(9):1045-1058. doi:  10.1080/13543784.2016.1196184
[11] MENNE J, EULBERG D, BEYER D, et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria[J]. Nephrol Dial Transplant,2017,32(2):307-315.
[12] LI H Y, LIN H G, NIEN F J, et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes[J]. PLoS One,2016,11(2):e0147981. doi:  10.1371/journal.pone.0147981
[13] QIAN Y, LI S, YE S, et al. Renoprotective effect of rosiglitazone through the suppression of renal intercellular adhesion molecule-1 expression in streptozotocin-induced diabetic rats[J]. J Endocrinol Investig,2008,31(12):1069-1074. doi:  10.1007/BF03345654
[14] KOSUGI T, NAKAYAMA T, HEINIG M, et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice[J]. Am J Physiol Renal Physiol,2009,297(2):F481-F488. doi:  10.1152/ajprenal.00092.2009
[15] LIU J J, YEOH L Y, SUM C F, et al. Vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1, is associated with diabetic kidney disease in Asians with type 2 diabetes[J]. J Diabetes Complications,2015,29(5):707-712. doi:  10.1016/j.jdiacomp.2015.02.011
[16] RUBIO-GUERRA A F, VARGAS-ROBLES H, LOZANO NUEVO J J, et al. Correlation between circulating adhesion molecule levels and albuminuria in type-2 diabetic hypertensive patients[J]. Kidney Blood Press Res,2009,32(2):106-109. doi:  10.1159/000210554
[17] SALMI M, KALIMO K, JALKANEN S. Induction and function of vascular adhesion protein-1 at sites of inflammation[J]. J Exp Med,1993,178(6):2255-2260. doi:  10.1084/jem.178.6.2255
[18] SALMI M, JALKANEN S. Vascular adhesion protein-1: a cell surface amine oxidase in translation[J]. Antioxid Redox Signal,2019,30(3):314-332. doi:  10.1089/ars.2017.7418
[19] DE ZEEUW D, RENFURM R W, BAKRIS G, et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial[J]. Lancet Diabetes Endocrinol,2018,6(12):925-933. doi:  10.1016/S2213-8587(18)30289-4
[20] SANCHEZ A P, SHARMA K. Transcription factors in the pathogenesis of diabetic nephropathy[J]. Expert Rev Mol Med,2009,11:e13. doi:  10.1017/S1462399409001057
[21] MEZZANO S, AROS C, DROGUETT A, et al. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy[J]. Nephrol Dial Transplant,2004,19(10):2505-2512. doi:  10.1093/ndt/gfh207
[22] YANG B M, HODGKINSON A, OATES P J, et al. High glucose induction of DNA-binding activity of the transcription factor NFkappaB in patients with diabetic nephropathy[J]. Biochim Biophys Acta,2008,1782(5):295-302. doi:  10.1016/j.bbadis.2008.01.009
[23] OHGA S, SHIKATA K, YOZAI K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation[J]. Am J Physiol Renal Physiol,2007,292(4):F1141-F1150. doi:  10.1152/ajprenal.00288.2005
[24] ZHANG Z, YUAN W, SUN L, et al. 1, 25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells[J]. Kidney Int,2007,72(2):193-201. doi:  10.1038/sj.ki.5002296
[25] ZHU L P, HAN J K, YUAN R R, et al. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway[J]. Biol Res,2018,51(1):9. doi:  10.1186/s40659-018-0157-8
[26] SIERRA-MONDRAGON E, MOLINA-JIJON E, NAMORADO-TONIX C, et al. All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy[J]. J Nutr Biochem,2018,60:47-60. doi:  10.1016/j.jnutbio.2018.06.002
[27] ZHANG S, WANG W D, MA J, et al. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis[J]. Phytomedicine,2019,57:385-395. doi:  10.1016/j.phymed.2018.12.045
[28] JIANG T, HUANG Z P, LIN Y F, et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy[J]. Diabetes,2010,59(4):850-860. doi:  10.2337/db09-1342
[29] PERGOLA P E, RASKIN P, TOTO R D, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes[J]. N Engl J Med,2011,365(4):327-336. doi:  10.1056/NEJMoa1105351
[30] DE ZEEUW D, AKIZAWA T, AUDHYA P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease[J]. N Engl J Med,2013,369(26):2492-2503. doi:  10.1056/NEJMoa1306033
[31] MARRERO M B, BANES-BERCELI A K, STERN D M, et al. Role of the JAK/STAT signaling pathway in diabetic nephropathy[J]. Am J Physiol Renal Physiol,2006,290(4):F762-F768. doi:  10.1152/ajprenal.00181.2005
[32] BERTHIER C C, ZHANG H Y, SCHIN M, et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy[J]. Diabetes,2009,58(2):469-477. doi:  10.2337/db08-1328
[33] ZHANG H Y, NAIR V, SAHA J, et al. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice[J]. Kidney Int,2017,92(4):909-921. doi:  10.1016/j.kint.2017.03.027
[34] TUTTLE K R, BROSIUS F C, ADLER S G, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial[J]. Nephrol Dial Transplant,2018,33(11):1950-1959. doi:  10.1093/ndt/gfx377
[35] PANCHAPAKESAN U, PEGG K, GROSS S, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells: renoprotection in diabetic nephropathy? PLoS One,2013,8(2):e54442. doi:  10.1371/journal.pone.0054442
[36] SCHEEN A J. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations[J]. Expert Opin Drug Metab Toxicol,2014,10(5):647-663. doi:  10.1517/17425255.2014.873788
[37] DEL P S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies[J]. Diabet Med,2009,26(12):1185-1192. doi:  10.1111/j.1464-5491.2009.02847.x
[38] MEROVCI A, MARI A, SOLIS C, et al. Dapagliflozin lowers plasma glucose concentration and improves β-cell function[J]. J Clin Endocrinol Metab,2015,100(5):1927-1932. doi:  10.1210/jc.2014-3472
[39] VALLON V, GERASIMOVA M, ROSE M A, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice[J]. Am J Physiol Renal Physiol,2014,306(2):F194-F204. doi:  10.1152/ajprenal.00520.2013
[40] TANG L, WU Y Y, TIAN M, et al. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes[J]. Am J Physiol Endocrinol Metab,2017,313(5):E563-E576. doi:  10.1152/ajpendo.00086.2017
[41] DEKKERS C C J, PETRYKIV S, LAVERMAN G D, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers[J]. Diabetes Obes Metab,2018,20(8):1988-1993. doi:  10.1111/dom.13301
[42] GENTILELLA R, PECHTNER V, CORCOS A, et al. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? [J]. Diabetes Metab Res Rev, 2019, 35(1): e3070.
[43] MADSBAD S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists[J]. Diabetes Obes Metab,2016,18(4):317-332. doi:  10.1111/dom.12596
[44] PHILIS-TSIMIKAS A, WYSHAM C H, HARDY E, et al. Efficacy and tolerability of exenatide once weekly over 7 years in patients with type 2 diabetes: an open-label extension of the DURATION-1 study[J]. J Diabetes Complications,2019,33(3):223-230. doi:  10.1016/j.jdiacomp.2018.11.012
[45] SBIDIAN E, CHAIMANI A, GARCIA-DOVAL I, et al. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis[J]. Cochrane Database Syst Rev,2017,12(12):CD011535.
[46] KODERA R, SHIKATA K, KATAOKA H U, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes[J]. Diabetologia,2011,54(4):965-978. doi:  10.1007/s00125-010-2028-x
[47] PARK C W, KIM H W, KO S H, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice[J]. J Am Soc Nephrol,2007,18(4):1227-1238. doi:  10.1681/ASN.2006070778
[48] BALAKUMAR P, KADIAN S, MAHADEVAN N. Are PPAR alpha agonists a rational therapeutic strategy for preventing abnormalities of the diabetic kidney? [J]. Pharmacol Res, 2012, 65(4): 430-436.
[49] DAL CANTO E, CERIELLO A, RYDÉN L, et al. Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications[J]. Eur J Prev Cardiol,2019,26(2_suppl):25-32. doi:  10.1177/2047487319878371