[1] PAOLI C, MISZTAK P, MAZZINI G, et al. DNA methylation in depression and depressive-like phenotype: biomarker or target of pharmacological intervention?[J]. Curr Neuropharmacol, 2022, 20(12):2267-2291. doi:  10.2174/1570159X20666220201084536
[2] SIRASANGI M I, ROOHI T F, KRISHNA K L, et al. Dietary Co-supplements attenuate the chronic unpredictable mild stress-induced depression in mice[J]. Behav Brain Res, 2024, 459:114788. doi:  10.1016/j.bbr.2023.114788
[3] BAREEQA S B, AHMED S I, SAMAR S S, et al. Prevalence of depression, anxiety and stress in China during COVID-19 pandemic: a systematic review with meta-analysis[J]. Int J Psychiatry Med, 2021, 56(4):210-227. doi:  10.1177/0091217420978005
[4] HOFFART A, JOHNSON S U, EBRAHIMI O V. Loneliness and social distancing during the COVID-19 pandemic: risk factors and associations with psychopathology[J]. Front Psychiatry, 2020, 11:589127. doi:  10.3389/fpsyt.2020.589127
[5] MILLER A H, MALETIC V, RAISON C L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression[J]. Biol Psychiatry, 2009, 65(9):732-741. doi:  10.1016/j.biopsych.2008.11.029
[6] RETHORST C D, TOUPS M S, GREER T L, et al. Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder[J]. Mol Psychiatry, 2013, 18(10):1119-1124. doi:  10.1038/mp.2012.125
[7] SHELTON R C, CLAIBORNE J, SIDORYK-WEGRZYNOWICZ M, et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression[J]. Mol Psychiatry, 2011, 16(7):751-762. doi:  10.1038/mp.2010.52
[8] KÖHLER O, BENROS M E, KROGH J. Anti-inflammatory intervention in depression: reply[J]. JAMA Psychiatry, 2015, 72(5):512-513.
[9] KOHLER O, KROGH J, MORS O, et al. Inflammation in depression and the potential for anti-inflammatory treatment[J]. Curr Neuropharmacol, 2016, 14(7):732-742. doi:  10.2174/1570159X14666151208113700
[10] 贾竑晓, 李自艳. 基于伤寒方证思想的精神疾病辨治体系的构建[J]. 中华中医药杂志, 2022, 37(9):5055-5059.
[11] 张辉, 王来法, 王雪琴, 等. 知母及其活性成分抗抑郁作用机制研究进展[J]. 现代中医药, 2023, 43(6):1-7.
[12] 徐海玉, 司国民. 司国民运用越鞠丸合百合知母汤治疗郁证经验[J]. 辽宁中医药大学学报, 2022, 24(10):143-146.
[13] DU H L, WANG K Q, SU L, et al. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression[J]. J Pharm Biomed Anal, 2016, 128:469-479. doi:  10.1016/j.jpba.2016.06.019
[14] WANG H Q, LIU H T, WANG L, et al. Uncovering the active components, prospective targets, and molecular mechanism of Baihe Zhimu Decoction for treating depression using network pharmacology-based analysis[J]. J Ethnopharmacol, 2021, 281:114586. doi:  10.1016/j.jep.2021.114586
[15] BI F F, BAI Y, ZHANG Y Y, et al. Ligustroflavone exerts neuroprotective activity through suppression of NLRP1 inflammasome in ischaemic stroke mice[J]. Exp Ther Med, 2022, 25(1):8. doi:  10.3892/etm.2022.11707
[16] SONG A Q, GAO B, FAN J J, et al. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice[J]. J Neuroinflammation, 2020, 17(1):178. doi:  10.1186/s12974-020-01848-8
[17] SHARMA B R, KANNEGANTI T D. Inflammasome signaling in colorectal cancer[J]. Transl Res, 2023, 252:45-52. doi:  10.1016/j.trsl.2022.09.002
[18] YANG T, NIE Z, SHU H F, et al. The role of BDNF on neural plasticity in depression[J]. Front Cell Neurosci, 2020, 14:82.
[19] LI J Y, ZHANG M, PEI Y Y, et al. The total alkaloids of Sophora alopecuroides L. improve depression-like behavior in mice via BDNF-mediated AKT/mTOR signaling pathway[J]. J Ethnopharmacol, 2023, 316:116723. doi:  10.1016/j.jep.2023.116723
[20] WANG B, JIN K L. Current perspectives on the link between neuroinflammation and neurogenesis[J]. Metab Brain Dis, 2015, 30(2):355-365. doi:  10.1007/s11011-014-9523-6
[21] WANG Y C, LI W Z, WU Y, et al. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons[J]. J Neuroinflammation, 2015, 12:246. doi:  10.1186/s12974-015-0465-7
[22] DELLAROLE A, MORTON P, BRAMBILLA R, et al. Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling[J]. Brain Behav Immun, 2014, 41:65-81. doi:  10.1016/j.bbi.2014.04.003
[23] LI M M, LI C L, YU H J, et al. Lentivirus-mediated interleukin-1β(IL-1β)knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice[J]. J Neuroinflammation, 2017, 14(1):190. doi:  10.1186/s12974-017-0964-9
[24] NORMAN G J, KARELINA K, ZHANG N, et al. Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury[J]. Mol Psychiatry, 2010, 15(4):404-414. doi:  10.1038/mp.2009.91
[25] SINGHAL G, JAEHNE E J, CORRIGAN F, et al. Inflammasomes in neuroinflammation and changes in brain function: a focused review[J]. Front Neurosci, 2014, 8:315.
[26] HU W, ZHANG Y D, WU W N, et al. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice[J]. Brain Behav Immun, 2016, 52:58-70. doi:  10.1016/j.bbi.2015.09.019
[27] DAVIS B K, WEN H T, TING J P Y. The inflammasome NLRs in immunity, inflammation, and associated diseases[J]. Annu Rev Immunol, 2011, 29:707-735. doi:  10.1146/annurev-immunol-031210-101405
[28] KOWIAŃSKI P, LIETZAU G, CZUBA E, et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity[J]. Cell Mol Neurobiol, 2018, 38(3):579-593. doi:  10.1007/s10571-017-0510-4
[29] JIN Y, SUN L H, YANG W, et al. The role of BDNF in the neuroimmune axis regulation of mood disorders[J]. Front Neurol, 2019, 10:515. doi:  10.3389/fneur.2019.00515
[30] TRIPP A, OH H, GUILLOUX J P, et al. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder[J]. Am J Psychiatry, 2012, 169(11):1194-1202. doi:  10.1176/appi.ajp.2012.12020248
[31] CALABRESE F, ROSSETTI A C, RACAGNI G, et al. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity[J]. Front Cell Neurosci, 2014, 8:430.
[32] MOLENDIJK M L, SPINHOVEN P, POLAK M, et al. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484)[J]. Mol Psychiatry, 2014, 19(7):791-800. doi:  10.1038/mp.2013.105
[33] DUMAN R S, VOLETI B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents[J]. Trends Neurosci, 2012, 35(1):47-56. doi:  10.1016/j.tins.2011.11.004
[34] FIRST M, GIL-AD I, TALER M, et al. The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression[J]. J Mol Neurosci, 2011, 45(2):246-255. doi:  10.1007/s12031-011-9515-5
[35] YUAN P X, ZHOU R L, WANG Y, et al. Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia[J]. J Affect Disord, 2010, 124(1-2):164-169. doi:  10.1016/j.jad.2009.10.017
[36] GOLDWATER D S, PAVLIDES C, HUNTER R G, et al. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery[J]. Neuroscience, 2009, 164(2):798-808. doi:  10.1016/j.neuroscience.2009.08.053
[37] FUKUMOTO K, FOGAÇA M V, LIU R J, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 R, 6 R)-hydroxynorketamine[J]. Proc Natl Acad Sci USA, 2019, 116(1):297-302. doi:  10.1073/pnas.1814709116