[1] OSTROM Q T, CIOFFI G, WAITE K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021, 23(12 Suppl 2): iii1-iii105.
[2] 汪超甲, 王辉. 脑胶质瘤化疗现状及耐药机制的研究进展[J]. 中国临床神经外科杂志, 2017, 22(11):791-794. doi:  10.13798/j.issn.1009-153X.2017.11.023
[3] ABBOTT N J, PATABENDIGE A A K, DOLMAN D E M, et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis,2010,37(1):13-25. doi:  10.1016/j.nbd.2009.07.030
[4] 董小平, 喻斌, 金路, 等. 血脑屏障细胞组成研究进展[J]. 中国实验方剂学杂志, 2012, 18(8):281-284. doi:  10.3969/j.issn.1005-9903.2012.08.083
[5] 国家药典委员会. 中华人民共和国药典2020版第一部[S]. 北京: 中国医药科技出版社, 2020: 52, 61.
[6] LI J X, XIE Q, MA R, et al. Recent progress on the synergistic antitumor effect of a borneol-modified nanocarrier drug delivery system[J]. Front Med (Lausanne), 2021, 8: 750170.
[7] 高雅, 李友明, 罗燕, 等. 右旋龙脑的药理作用研究进展[J]. 现代药物与临床, 2021, 36(7):1537-1540.
[8] 段美美, 曾武, 陈浩, 等. 天然冰片对顺铂在C6脑胶质瘤模型大鼠体内的药动学及脑组织分布的影响[J]. 中药药理与临床, 2013, 29(5):24-27. doi:  10.13412/j.cnki.zyyl.2013.05.009
[9] 郭军洽, 张荣, 段美美, 等. 天然冰片对甲氨蝶呤透过血肿瘤屏障的影响[J]. 中药新药与临床药理, 2015, 26(1):73-77. doi:  10.3969/j.issn.1003-9783.2015.01.018
[10] 崔爱玲, 王巍东, 赵松鹤, 等. 瘤内注射吉西他滨治疗大鼠脑胶质瘤的效果观察[J]. 肿瘤研究与临床, 2013, 25(12):796-798. doi:  10.3760/cma.j.issn.1006-9801.2013.12.002
[11] 张帆, 房绍英, 印晓星. 冰片对吉西他滨在脑胶质瘤模型大鼠体内药动学的影响[J]. 徐州医科大学学报, 2021, 41(5):324-327. doi:  10.3969/j.issn.2096-3882.2021.05.003
[12] 范成普, 陈才红, 杜杭根, 等. 冰片对替莫唑胺抗大鼠脑胶质瘤促进作用的研究[J]. 浙江医学, 2019, 41(18):1956-1958,1963,1913. doi:  10.12056/j.issn.1006-2785.2019.41.18.2019-1186
[13] HU Q Y, GAO X L, KANG T, et al. CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels[J]. Biomaterials,2013,34(37):9496-9508. doi:  10.1016/j.biomaterials.2013.09.001
[14] LV L Y, LI X R, QIAN W, et al. Enhanced anti-glioma efficacy by borneol combined with CGKRK-modified paclitaxel self-assembled redox-sensitive nanoparticles[J]. Front Pharmacol,2020,11:558. doi:  10.3389/fphar.2020.00558
[15] REDDY S, TATIPARTI K, SAU S, et al. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors[J]. Drug Discov Today,2021,26(8):1944-1952. doi:  10.1016/j.drudis.2021.04.008
[16] MENG L W, CHU X Y, XING H Y, et al. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol[J]. Int J Pharm, 2019, 567: 118485.
[17] LU Y, CHEN X L, DU S Y, et al. The in situ and in vivo study on enhancing effect of borneol in nasal absorption of Geniposide in rats[J]. Arch Pharm Res,2010,33(5):691-696. doi:  10.1007/s12272-010-0507-8
[18] 赵霄, 余双文, 杜俊锋, 等. 冰片/RGD双修饰多烯紫杉醇纳米粒经鼻给药抗脑胶质瘤作用研究[J]. 药学学报, 2021, 56(12):3233-3242. doi:  10.16438/j.0513-4870.2021-1193
[19] SRINIVAS U S, TAN B W Q, VELLAYAPPAN B A, et al. ROS and the DNA damage response in cancer[J]. Redox Biol, 2019, 25: 101084.
[20] PRASAD S, GUPTA S C, TYAGI A K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals[J]. Cancer Lett,2017,387:95-105. doi:  10.1016/j.canlet.2016.03.042
[21] 李文明, 吴琦, 朱彧. 异硫氰酸苄酯对脑胶质瘤U-87 MG细胞活性氧的诱导作用及其机制研究[J]. 中国现代应用药学, 2014, 31(8):938-942.
[22] 邹林樾, 徐晓雪, 户乃丽. 雷公藤甲素对脑胶质瘤细胞凋亡的影响及机制探讨[J]. 继续医学教育, 2018, 32(9):145-147. doi:  10.3969/j.issn.1004-6763.2018.09.080
[23] 蔡紫微, 蒋佩文, 张丹莹, 等. 活性氧介导重楼皂苷诱导脑胶质瘤细胞凋亡的研究[J]. 成都医学院学报, 2021, 16(4):419-423.
[24] CAO W Q, ZHAI X Q, MA J W, et al. Natural borneol sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway[J]. Pharm Biol,2020,58(1):72-79. doi:  10.1080/13880209.2019.1703756
[25] 郭源源, 王鹏云. 冰片联合紫杉醇对脑胶质瘤细胞的化疗增效作用[J]. 亚太传统医药, 2018, 14(9):9-11.
[26] LIU W J, YIN Y B, SUN J Y, et al. Natural borneol is a novel chemosensitizer that enhances temozolomide-induced anticancer efficiency against human glioma by triggering mitochondrial dysfunction and reactive oxide species-mediated oxidative damage[J]. Onco Targets Ther,2018,11:5429-5439. doi:  10.2147/OTT.S174498
[27] HASELOFF R F, DITHMER S, WINKLER L, et al. Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects[J]. Semin Cell Dev Biol,2015,38:16-25. doi:  10.1016/j.semcdb.2014.11.004
[28] 陈艳明, 王宁生. 冰片对血脑屏障体外模型细胞间紧密连接和细胞吞饮囊泡的影响[J]. 中国中西医结合杂志, 2004, 24(7):632-634. doi:  10.3321/j.issn:1003-5370.2004.07.014
[29] DUAN M M, XING Y M, GUO J Q, et al. Borneol increases blood-tumour barrier permeability by regulating the expression levels of tight junction-associated proteins[J]. Pharm Biol,2016,54(12):3009-3018. doi:  10.1080/13880209.2016.1199044
[30] MILLER D S, BAUER B, HARTZ A M S. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy[J]. Pharmacol Rev,2008,60(2):196-209. doi:  10.1124/pr.107.07109
[31] PATHAN N, SHENDE P. Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier[J]. J Control Release,2021,335:398-407. doi:  10.1016/j.jconrel.2021.05.046
[32] 朱国栋. 冰片开放血脑屏障及通过P糖蛋白介导的机制研究[D]. 广州: 广州医学院, 2009.
[33] WANG L J, SUN Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein[J]. Arch Biochem Biophys, 2020, 696: 108675.
[34] 陈艳明, 王宁生. 冰片对P-糖蛋白的影响[J]. 中药新药与临床药理, 2003, 14(2):96-99. doi:  10.19378/j.issn.1003-9783.2003.02.011
[35] TANG B, FANG G H, GAO Y, et al. Lipid-albumin nanoassem-blies co-loaded with borneol and paclitaxel for intracellular drug delivery to C6 glioma cells with P-gp inhibition and its tumor targeting[J]. Asian J Pharm Sci,2015,10(5):363-371. doi:  10.1016/j.ajps.2015.04.004
[36] WANG S X, TAN N, MA C C, et al. Inhibitory effects of benzaldehyde, vanillin, muscone and borneol on P-glycoprotein in caco-2 cells and everted gut sac[J]. Pharmacology,2018,101(5-6):269-277. doi:  10.1159/000487144
[37] YU B, RUAN M, DONG X P, et al. The mechanism of the opening of the blood-brain barrier by borneol: a pharmacodynamics and pharmacokinetics combination study[J]. J Ethnopharmacol,2013,150(3):1096-1108. doi:  10.1016/j.jep.2013.10.028
[38] GABRIELY G, WHEELER M A, TAKENAKA M C, et al. Role of AHR and HIF-1α in glioblastoma metabolism[J]. Trends Endocrinol Metab,2017,28(6):428-436. doi:  10.1016/j.tem.2017.02.009
[39] WANG Z, LI Q L, XIA L, et al. Borneol promotes apoptosis of Human Glioma Cells through regulating HIF-1a expression via mTORC1/eIF4E pathway[J]. J Cancer,2020,11(16):4810-4822. doi:  10.7150/jca.45304