[1] Guinea J. Global trends in the distribution of Candida species causing candidemia[J]. Clin Microbiol Infect, 2014, 20(Suppl 6):5-10.
[2] Cottier F, Pavelka N. Complexity and dynamics of host-fungal interactions[J]. Immunol Res, 2012, 53(1-3):127-135.
[3] Romani L, Zelante T, Palmieri M, et al. The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism[J]. Semin Immunopathol, 2015, 37(2):163-171.
[4] Mallick EM, Bennett RJ. Sensing of the microbial neighborhood by Candida albicans[J]. PLoS Pathog, 2013, 9(10):e1003661.
[5] Staniszewska M, Bondaryk M, Pilat J, et al. Virulence factors of Candida albicans[J]. Przegl Epidemiol, 2012, 66(4):629-633.
[6] Zhu W, Filler S G. Interactions of Candida albicans with epithelial cells[J]. Cell Microbiol, 2010, 12(3):273-282.
[7] Hoyer LL. The ALS gene family of Candida albicans[J]. Trends Microbiol, 2001, 9(4):176-180.
[8] Sun N, Fonzi W, Chen H, et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants[J]. Antimicrob Agents Chemother, 2013, 57(1):532-542.
[9] Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance[J]. Front Pharmacol, 2014, 5:202.
[10] Ene IV, Adya AK, Wehmeier S, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen[J]. Cell Microbiol, 2012, 14(9):1319-1335.
[11] Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence[J]. Nature, 2001, 412(6842):83-86.
[12] Cheah HL, Lim V, Sandai D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents[J]. PLoS One, 2014, 9(4):e95951.
[13] Kemsawasd V, Viana T, Ardo Y, et al. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation[J]. Appl Microbiol Biotechnol, 2015.
[14] Gagiano M, Bauer F-F, Pretorius IS. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2002, 2(4):433-470.
[15] Buu LM, Chen YC. Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicans[J]. J Biomed Sci, 2014, 21:22.
[16] Han TL, Cannon RD, Villas-B? as S-G. The metabolic basis of Candida albicans morphogenesis and quorum sensing[J]. Fungal Genet Biol, 2011, 48(8):747-763.
[17] Brown AJ, Brown GD, Netea MG, et al. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels[J]. Trends Microbiol, 2014, 22(11):614-622.
[18] Vieira N, Casal M, Johansson B, et al. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans[J]. Mol Microbiol, 2010, 75(6):1337-1354.
[19] Kitahara N, Morisaka H, Aoki W, et al. Description of the interaction between Candida albicans and macrophages by mixed and quantitative proteome analysis without isolation[J]. Amb Express, 2015, 5(1):127.
[20] Ramirez MA, Lorenz MC. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes[J]. Eukaryot Cell, 2007, 6(2):280-290.
[21] Sellam A, van het Hoog M, Tebbji F, et al. Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans[J]. Eukaryot Cell, 2014, 13(5):675-690.
[22] Dunkel N, Biswas K, Hiller E, et al. Control of morphogenesis, protease secretion and gene expression in Candida albicans by the preferred nitrogen source ammonium[J]. Microbiology, 2014, 160(Pt 8):1599-1608.
[23] Ramachandra S, Linde J, Brock M, et al. Regulatory networks controlling nitrogen sensing and uptake in Candida albicans[J]. PLoS One, 2014, 9(3):e92734.
[24] Yan L, Zhang JD, Cao YB, et al. Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain[J]. J Proteome Res, 2007, 6(6):2248-2256.
[25] Xu Y, Sheng F, Zhao J, et al. ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates[J]. Arch Microbiol, 2015.