[1] Del Bufalo A, Cesario A, Salinaro G, et al. Alpha9 alpha10 nicotinic acetylcholine receptors as target for the treatment of chronic pain [J]. Curr Pharm Des, 2014, 20(38): 6042-6047.
[2] Woodcock J. A difficult balance——pain management, drug safety, and the FDA [J]. N Engl J Med, 2009, 361(22): 2105-2107.
[3] Ballantyne JC, Shin NS. Efficacy of opioids for chronic pain: a review of the evidence [J]. Clin J Pain, 2008, 24(6): 469-478.
[4] Smith HS. Opioids and neuropathic pain [J]. Pain Physician, 2012, 15(3 Suppl): ES93-110.
[5] Corti C. A history of smoking [M]. Montana: Kessinger Publishing, 2007:112.
[6] Davis L, Pollock LJ, Stone T. Visceral pain [J]. Surg Gynecol Obstetr, 1932, 55: 418-427.
[7] Sahley TL, Berntson GG. Antinociceptive effects of central and systemic administrations of nicotine in the rat [J]. Psychopharmacology, 1979, 65(3):279-283.
[8] Garraffo HM, Spande TF, Williams M. Epibatidine: from frog alkaloid to analgesic clinical candidates. A testimonial to true grit! [J]. Heterocycles, 2009, 79: 207-217.
[9] Rupniak NM, Patel S, Marwood R, et al. Antinociceptive and toxic effects of (+)-epibatidine oxalate attributableto nicotinic agonist activity [J]. Br J Pharmacol, 1994, 113(4): 1487-1493.
[10] Umana IC, Daniele CA, McGehee DS. Neuronal nicotinic receptors as analgesic targets: it's a winding road [J]. Biochem Pharmacol, 2013, 86(8): 1208-1214.
[11] Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits [J]. Nature, 1999, 398(6730): 805-810.
[12] Nirogi R, Goura V, Abraham R, et al. α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain [J]. Eur J Pharmacol, 2013, 712(1-3): 22-29.
[13] Rueter LE, Meyer MD, Decker MW. Spinal mechanisms underlying A-85380-induced effects on acute thermal pain [J]. Brain Res, 2000, 872(1-2): 93-101.
[14] Daly JW, Garraffo HM, Spande TF, et al. Alkaloids from frog skin: the discovery of epibatidine and the potential for developing novel non-opioid analgesics [J]. Nat Prod Rep, 2000, 17(2): 131-135.
[15] Bannon AW, Decker MW, Holladay MW, et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors[J]. Science, 1998, 279(5347): 77-81.
[16] Lynch JJ 3rd, Wade CL, Mikusa JP, et al. ABT-594 (a nicotinic acetylcholine agonist): anti-allodynia in a rat chemotherapy-induced pain model [J].Eur J Pharmacol, 2005, 509(1): 43-48.
[17] Holladay MW, Wasicak JT, Lin NH, et al. Identification and initial structure-activity relationships of (R)-5-(2-azetidinylmethoxy)-2-chloropyridine (ABT-594), a potent, orally active, non-opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors [J]. J Med Chem, 1998, 41(4): 407-412.
[18] Alsharari SD, Freitas K, Damaj MI. Functional role of alpha7 nicotinic receptor in chronic neuropathic and inflammatory pain: studies in transgenic mice [J]. Biochem Pharmacol, 2013, 86(8):1201-1207.
[19] Gao B, Hierl M, Clarkin K, et al. Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptoragonists in animal models of persistent pain [J]. Pain,2010, 149(1): 33-49.
[20] Bagdas D, Sonat FA, Hamurtekin E, et al. The antihyperalgesic effect of cytidine-50-diphosphate-choline in neuropathic and inflammatory pain models [J]. Behav Pharmacol, 2011, 22(5-6): 589-598.
[21] 刘献文, 张宗旺. 尼古丁镇痛作用机制的研究进展 [J]. 国际麻醉学与复苏杂志, 2013, 34(4): 368-370.
[22] Cordero-Erausquin M, Changeux JP. Tonic nicotinic modulation of serotoninergic transmission in the spinal cord [J]. Proc Natl Acad Sci(USA), 2001, 98(5): 2803-2807.
[23] Frber L, Stratz T, Brückle W, et al. Efficacy and tolerability of tropisetron in primary fibromyalgia--a highly selective and competitive 5-HT3 receptor antagonist. German Fibromyalgia Study Group [J]. Scand J Rheumatol Suppl, 2000, 113: 49-54.
[24] Ramirez-Latorre J, Yu CR, Qu X, et al. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels [J]. Nature,1996, 380(6572): 347-351.
[25] Jackson KJ, Sanjakdar SS, Muldoon PP, et al. a3b4*nicotinic acetylcholine receptor subtype mediates nicotine reward and physicalnicotine withdrawal signs independently of the a5 subunit in the mouse[J]. Neuropharmacology, 2013, 70: 228-235.
[26] Lee CH, Zhu C, Malysz J, et al. a4b2neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of a4b2 nAChR agonists in pain [J]. Biochem Pharmacol, 2011, 82(8):959-966.
[27] Uteshev VV. The therapeutic promise of positive allosteric modulation of nicotinic receptors [J]. Eur J Pharmacol, 2014, 727: 181-185.
[28] Zhu CZ, Chin CL, Rustay NR, et al. Potentiation ofanalgesic efficacy but not side effects: co-administration of an alpha4beta2neuronal nicotinic acetylcholine receptor agonist and its positive allostericmodulator in experimental models of pain in rats [J]. Biochem Pharmacol, 2011, 82(8): 967-976.
[29] Freitas K, Negus SS, Carroll FI, et al. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model [J]. Br J Pharmacol, 2013, 169(3): 567-579.