[1] Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs:successes, challenges and opportunities[J]. Mol Oncol, 2012, 6 (2):155-176.
[2] Kalyaanamoorthy S, Phoebe Chen Y-P. Structure-based drug design to augment hit discovery[J]. Drug Discov Today, 2011, 16(17-18):831-839.
[3] Kutchukian PS, Shakhnovich EI. De novo design:balancing novelty and confined chemical space[J]. Expert Opin Drug Discov, 2010. 5(8), 789-812.
[4] Park H, Jeong Y, Hong S. Structure-based de novo design and biochemical evaluation of novel BRAF kinase inhibitors[J]. Bioorg Med Chem Lett, 2012, 22(2):1027-1030.
[5] Schneider G, Fechner U. Computer-based de novo design of drug-like molecules[J]. Nat Rev Drug Discov 2005, 4 (8):694-663.
[6] Lipinski,C, Hopkins A. Navigating chemical space for biology and medicine[J]. Nature, 2004,432(7019):855-861.
[7] Platania CB, Salomone S, Leggio GM, et al. Homology modeling of dopamine d(2) and d(3) receptors:molecular dynamics refinement and docking evaluation[J]. PloS One, 2012, 7 (9):44316.
[8] Keseru GM, Makara GM. Hit discovery and hit-to-lead approaches[J]. Drug Discov Today, 2006, 11(15-16), 741-748.
[9] Bohm HJ. The computer program LUDI:a new method for de novo design of enzyme inhibitors[J]. J Comput Aided Mol Des, 1992, 6 (1):61-78.
[10] Wang RX, Gao Y, Lai LH. LigBuilder:a multi-purpose progrom for structure-based drug design[J]. J Mol Model, 2000, 6 (7-8); 498-516.
[11] Wang RX, Liu L, Lai LH, et al. SCORE:A new empirical method for estimating the binding affinity of a protein-ligand complex[J]. J Mol Model, 1998, 4 (12):370-394.
[12] Yuan,YX, Pei JF, Lai LH. LigBuilder 2:a practical de novo drug design approach[J]. J Chem Inform Model, 2011, 51 (5):1083-1091.
[13] Cramer RD. Design and preliminary results of LeapFrog, a second generation de novo drug discovery tool[J]. J Mol Graphics, 1993, 11(4); 271-272.
[14] Ambure PS, Gangwal RP, Sanganwar AT. 3D-QSAR and molecular docking analysis of biphenyl amide derivatives as p38α mitogen-activated protein kinase inhibitors[J]. Mol Divers, 2012,16(2):377-388.
[15] Makhija MT, Kasliwal RT, Kulkarni VM, et al. De novo design and synthesis of HIV-1 integrase inhibitors[J]. Bioorg Med Chem, 2004, 12(9):2317-2333.
[16] Schinerider G, Neidhart W, Giller T, et al. Scaffold-Hopping by topological search:a contribution to virtual screening[J]. Angewandte Chemie (International Ed. in English), Angew Chem Int Ed Engl, 1999, 38(19):2894-2896.
[17] Schneider G. De novo design-hopping against hope[EB/OL]. Drug Discovery Today:Technologies.(2012-06-20)[2013-01-02].
[18] Wolber G. 3D pharmacophore elucidation and virtual screening[J]. Drug Discov Today, 2010, 7(4):203-204.
[19] Lauri G, Bartlett PA. CAVEAT:a program to facilitate the design of organic molecules[J]. J Comput Aided Mol Des, 1994, 8(1):51-66.
[20] Beno BR, Langley DR. MORPH:a new tool for ligand design[J]. J Chem Inform Model, 2010, 50(6):1159-1164.
[21] Maass P, Schulz-Gasch T, Stahl M, et al. Recore:a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations[J]. J Chem Inform Model, 2007,47(2):390-399.
[22] Gillet VJ, Newell W, Mata P, et al. SPROUT:recent developments in the de novo design of molecules[J]. J Chem Inform Comput Sci, 1994, 34:207-217.
[23] Vinkers HM, de Jonge MR, Daeyaert FF, et al. SYNOPSIS:SYNthesize and optimize system in silico[J]. J Med Chem, 2003, 46:2765-2773.
[24] Pierce AC, Rao G, Bemis GW, et al. BREED generating novel inhibitors through hybridization of known ligands. Aplication to CDK2, p38and HIV protease[J]. J Med Chem, 2004, 47:2768-2775.
[25] Marra E, Palombo F, Ciliberto G, et al. Intratumoral electro-transfer of small interfering RNA against kinesin spindle protein (KSP) slows down tumor progression[J]. J Cell Physiol, 2013,228(1),58-64.
[26] Jiang,C, Yang L, Wu WT, et al. De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors[J]. Bioorg Med Chem, 2011,19 (18):5612-5627.
[27] Kim LA, D'Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis[J]. Am J Pathol, 2012, 181(2):376-379.
[28] Uno M, Ban HS, Nabeyama W, et al. De novo design and synthesis of N-benzylanilines as new candidates for VEGFR tyrosine kinase inhibitors[J]. Org Biomol Chem, 2008, 6 (6):979-981.
[29] Albert H, Santos S, Battaqlia E, et al. Differential expression of CDC25 phosphatases splice variants in human breast cancer cells[J]. Clin Chem Lab Med, 2011, 49(10):1707-1714.
[30] Park H, Bahn YJ, Ryu SE, Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors[J]. Bioorg Med Chem Lett, 2009, 19(15):4330-4334.
[31] Zhou DJ, Mei Q, Li JT, et al, Cyclophilin A and viral infections[J]. Bioch Biophys Res Comm, 2012,424(4), 647-650.
[32] Choi KJ, Piao YJ, Lim MJ, et al. Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia-and cisplatin-induced cell death[J]. Cancer Res, 2007, 67(8):3654-3662.
[33] Ni SS, Yuan YX, Huang J, et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach[J]. J Med Chem, 2009, 52(17):5295-5298.
[34] Wong C, Chen S. The development,application and limitations of breast cancer cell lines to study tamoxifen and aromataes inhibitor resistance[J]. J Steroid Biochem Mol Biol, 2012, 131(3-5):83-92.
[35] Gueto C, Torres J, Vivas-Reyes R. CoMFA, LeapFrog and blind docking studies on sulfonanilide derivatives acting as selective aromatase expression regulators[J]. Eur J Med Chem, 2009, 44(9):3445-3451.
[36] Su B, Diaz-Cruz ES, Landini S, et al. Novel sulfonanilide analoguew suppress aromataes expression and activity in breast cancer cells independent of COX-2 inhibiton[J]. J Med Chem, 2006, 49(4):1413-1419.
[37] Davies H, Bignell GR, Cox C, et al. Mutations of the B-raf gene in human cancer[J]. Nature, 2002, 417(6892), 949-954.
[38] Gopalsamy A, Shi M, Hu Y, et al. B-raf kinase inhibitors:hit enrichment through scaffold hopping[J]. Bioorg Med Chem Lett, 2010, 20(8):2431-2434.