[1] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annu Rev Plant Biol, 2003, 54: 519.
[2] Ralph J, Lundquist K, Brunow G, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews, 2004, 3(1): 29.
[3] Guo D, Chen F, Inoue K, et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. The Plant Cell Online, 2001, 13(1): 73.
[4] Bayindir U, Alfermann AW, Fuss E. Hinokinin biosynthesis in Linum corymbulosum Reichenb[J]. Plant J, 2008, 55(5): 810.
[5] Vanholme R, Morreel K, Ralph J, et al. Lignin engineering[J]. Curr Opin Plant Biol, 2008, 11(3): 278.
[6] Ralph J, Akiyama T, Kim H, et al. Effects of coumarate 3-hydroxylase down-regulation on lignin structure[J]. J Biol Chem, 2006, 281(13): 8843.
[7] Wagner A, Ralph J, Akiyama T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase in Pinus radiata[J]. Proceedings of the National Academy of Sciences, 2007, 104(28): 11856.
[8] Baucher M, Halpin C, Petit-Conil M, et al. Lignin: genetic engineering and impact on pulping[J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38(4): 305.
[9] Butland SL, Chow ML, Ellis BE. A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures[J]. Plant Mol Biol, 1998, 37(1): 15.
[10] Kumar A, Ellis BE. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution[J]. Plant Physiol, 2001, 127(1): 230.
[11] Lee BK, Park MR, Srinivas B, et al. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa[J]. Mol Cells, 2003, 16(1): 34.
[12] Ehlting J, Shin JJ, Douglas CJ. Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains[J]. Plant J, 2001, 27(5): 455.
[13] Hu WJ, Harding SA, Lung J, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J]. Nat Biotechnol, 1999, 17(8): 808.
[14] Schoch G, Goepfert S, Morant M, et al. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway[J]. J Biol Chem, 2001, 276(39): 36566.
[15] Anterola A, Lewis N. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity[J]. Phytochemistry, 2002, 61(3): 221.
[16] Chen F, Yasuda S, Fukushima K. Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC[J]. Planta, 1999, 207(4): 597.
[17] Ruegger M, Meyer K, Cusumano J, et al. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis[J]. Plant Physiology, 1999, 119(1): 101.
[18] Dauwe R, Morreel K, Goeminne G, et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration[J]. Plant Journal, 2007, 52(2): 263.
[19] Wadenback J, von Arnold S, Egertsdotter U, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR) [J]. Transgenic Res, 2008, 17(3): 379.
[20] Abdulrazzak N, Pollet B, Ehlting J, et al. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth[J]. Plant Physiol, 2006, 140(1): 30.
[21] Sibout R, Eudes A, Mouille G, et al. Cinnamyl alcohol dehydrogenase-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis[J]. The Plant Cell Online, 2005, 17(7): 2059.
[22] Leple J, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. The Plant Cell Online, 2007, 19(11): 3669.
[23] Leple JC, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. Plant Cell, 2007, 19(11): 3669.
[24] Rohde A, Morreel K, Ralph J, et al. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism[J]. Plant Cell, 2004, 16(10): 2749.
[25] Halpin C, Boerjan W. Stacking transgenes in forest trees[J]. Trends Plant Sci, 2003, 8(8): 363.
[26] Koutaniemi S, Warinowski T, K rk nen A, et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR[J]. Plant Molecular Biology, 2007, 65(3): 311.
[27] Sablowski R, Baulcombe D, Bevan M. Expression of a flower-specific Myb protein in leaf cells using a viral vector causes ectopic activation of a target promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15): 6901.
[28] Sablowski R, Moyano E, Culianez-Macia F, et al. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes[J]. The EMBO Journal, 1994, 13(1): 128.
[29] Tamagnone L, Merida A, Parr A, et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco[J]. The Plant Cell Online, 1998, 10(2): 135.
[30] Borevitz JO, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. Plant Cell, 2000, 12(12): 2383.
[31] Kawaoka, A, Kaothien P, Yoshida K, et al.Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis[J]. Plant J, 2000. 22(4): 289.