留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

PP2C蛋白磷酸酶调控的细胞信号通路研究进展

齐阳 许维恒 张俊平 宋洪涛

齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
引用本文: 齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
Citation: QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001

PP2C蛋白磷酸酶调控的细胞信号通路研究进展

doi: 10.3969/j.issn.1006-0111.2018.05.001

Progress on cell signaling pathways regulated by PP2C protein phosphatases

  • 摘要: 2C类蛋白磷酸酶是蛋白磷酸酶家族的重要成员,可以对丝/苏氨酸残基特异性脱磷酸。近来研究表明,2C类蛋白磷酸酶控制着大量关键的细胞功能,如增殖、细胞周期阻滞、衰老和细胞程序性死亡、凋亡和自噬等,因而在介导机体免疫反应、衰老、神经发育及肿瘤发生发展中发挥重要的生物学作用。总结PP2C基因各亚型参与介导的重要细胞信号通路,如丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇3-激酶/丝苏氨酸蛋白激酶(PI3K/AKT)、转化生长因子-β(TGF-β)/Smads、核转录因子-κB(NF-κB)及DNA损伤应答通路,以期为阐明上述生理病理过程的分子基础和调控机制提供新的思路。
  • [1] TONG Y, QUIRION R, SHEN SH. Cloning and characterization of a novel mammalian PP2C isozyme[J]. J Biol Chem, 1998, 273(52):35282-35290.
    [2] OGHABI BAKHSHAIESH T, MAJIDZADEH-A K,ESMAEILI R. Wip1:A candidate phosphatase for cancer diagnosis and treatment[J]. DNA Repair(Amst), 2017, 54:63-66.
    [3] LU X, AN H, JIN R, et al. PPM1A is a RelA phosphatase with tumor suppressor-like activity[J]. Oncogene, 2014, 33(22):2918-2927.
    [4] LIU T, LIU Y, CAO J, et al. ILKAP binding to and dephosphorylating HIF-1α is essential for apoptosis induced by severe hypoxia[J]. Cell Physiol Biochem, 2018, 46(6):2500-2507.
    [5] TANG Y, PAN B, ZHOU X, et al. Wip1-dependent modulation of macrophage migration and phagocytosis[J]. Redox Biol, 2017, 13:665-673.
    [6] MATHUR A, PANDEY VK, KAKKAR P. PHLPP:a putative cellular target during insulin resistance and type 2 diabetes[J]. J Endocrinol, 2017, 233(3):R185-R198.
    [7] LIU G, HU X, SUN B, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1[J]. Blood, 2013, 121(3):519-529.
    [8] YU Y, LI J, WAN Y, et al. GADD45α induction by nickel negatively regulates JNKs/p38 activation via promoting PP2Cα expression[J]. PLoS ONE, 2013, 8(3):e57185.
    [9] NEWTON AC, TROTMAN LC. Turning off AKT:PHLPP as a drug target[J]. Annu Rev Pharmacol Toxicol, 2014, 54:537-558.
    [10] SUN Y, TIAN H, WANG L. Effects of PTEN on the proliferation and apoptosis of colorectal cancer cells via the phosphoinositol-3-kinase/Akt pathway[J]. Oncol Rep, 2015, 33(4):1828-1836.
    [11] GRZECHNIK AT, NEWTON AC. PHLPPing through history:a decade in the life of PHLPP phosphatases[J]. Biochem Soc Trans, 2016, 44(6):1675-1682.
    [12] NITSCHE C, EDDERKAOUI M, MOORE RM, et al. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation[J]. Gastroenterology, 2012, 142(2):377-387.
    [13] HWANG SM, FEIGENSON M, BEGUN DL, et al. Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis[J]. J Orth Res, 2018, 36(5):1487-1497.
    [14] QIN Y, MENG L, FU Y, et al. SNORA74B gene silencing inhibits gallbladder cancer cells by inducing PHLPP and suppressing Akt/mTOR signaling[J]. Oncotarget, 2017, 8(12):19980-19996.
    [15] JANG SW, YANG SJ, SRINIVASAN S, et al. Akt phosphorylates Mstl and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation[J]. J Biol Chem, 2007, 282(42):30836-30844.
    [16] QIAO M, WANG Y, XU X, et al. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis[J]. Mol Cell, 2010, 38(4):512-523.
    [17] KARIN M. Nuclear factor-kappaB in cancer development and progression[J]. Nature, 2006, 441(7092):431-436.
    [18] RINKENBAUGH AL, BALDWIN AS. The NF-κB pathway and cancer stem cells[J]. Cells, 2016, 5(2):E12.
    [19] CHRISTIAN F, SMITH EL, CARMODY RJ. The Regulation of NF-κB Subunits by Phosphorylation[J]. Cells, 2016, 5(1):12.
    [20] SUN W, YU Y, DOTTI G, et al. PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFα-induced IKKbeta-NF-kappaB activation[J]. Cell Signal, 2009, 21(1):95-102.
    [21] AGARWAL NK, ZHU X, GAGEA M, et al. PHLPP2 suppresses the NF-κB pathway by inactivating IKKβ kinase[J]. Oncotarget, 2014, 5(3):815-823.
    [22] MIN J, ZASLAVSKY A, FEDELE G, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB[J]. Nat Med, 2010, 16(3):286-294.
    [23] CHEN LF, GREENE WC. Shaping the nuclear action of NF-kappaB[J]. Nat Rev Mol Cell Biol, 2004, 5(5):392-401.
    [24] LIU L, DAI Y, CHEN J, et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK -3β/snail signaling[J]. Hepatology, 2014, 59(2):531-543.
    [25] SHEN XF, ZHAO Y, JIANG JP, et al. Phosphatase Wip1 in immunity:an overview and update[J]. Front Immunol, 2017, 8:8.
    [26] LOWE JM, CHA H, YANG Q, et al. Nuclear factor-kappaB(NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase[J]. J Biol Chem, 2010, 285(8):5249-5257.
    [27] LIN X, DUAN X, LIANG YY, et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling[J]. Cell, 2016, 165(2):498.
    [28] DAI F, SHEN T, LI Z, et al. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3[J]. EMBO Rep, 2011, 12(11):1175-1181.
    [29] WANG L, WANG X, CHEN J, et al. Activation of protein serine/threonine phosphatase PP2Cα efficiently prevents liver fibrosis[J]. PLoS ONE, 2010, 5(12):e14230.
    [30] MIYAZONO K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer[J]. Phys Biol Sci, 2009, 85(8):314-323.
    [31] GENG J, FAN J, OUYANG Q, et al. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway[J]. Oncotarget, 2014, 5(14):5700-5711.
    [32] FURGASON JM, BAHASSI el M. Targeting DNA repair mechanisms in cancer[J]. Pharmacol Ther, 2013, 137(3):298-308.
    [33] LEEM J, KIM JS, OH JS. WIPL phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes[J]. Biol Reprod, 2018(Epub).
    [34] JAISWAL H, BENADA J, MVLLERS E, et al. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration[J]. EMBO J, 2017, 36(14):2161-2176.
    [35] WANG ZP, TIAN Y, LIN J. Role of wild-type p53-induced phosphatase 1 in cancer[J]. Oncol Lett, 2017, 14(4):3893-3898.
    [36] OLIVA-TRASTOY M, BERTHONAUD V, CHEVALIER A, et al. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase[J]. Oncogene, 2006, 26(10):1449-1458.
    [37] SLUSS HK, ARMATA H, GALLANT J, et al. Phosphorylation of serine 18 regulates distinct p53 functions in mice[J]. Mol Cell Biol, 2004, 24(3):976-984.
    [38] GOLOUDINA AR, KOCHETKOVA EY, POSPELOVA TV, et al. Wip1 phosphatase:between p53 and MAPK kinases pathways[J]. Oncotarget, 2016, 7(21):31563-31571.
  • [1] 方宇昕, 李育, 刘宝姝, 董国强.  磷脂酰肌醇蛋白聚糖-3靶向治疗肝细胞癌的研究进展 . 药学实践与服务, 2023, 41(10): 586-593. doi: 10.12206/j.issn.2097-2024.202307047
    [2] 李婷婷, 张俊平.  信号转导和转录激活因子3在肝病中的研究进展 . 药学实践与服务, 2022, 40(3): 208-212, 280. doi: 10.12206/j.issn.1006-0111.202109072
    [3] 张素丽, 李雯雯, 徐艺珈, 赵明沂, 刘岩峰.  外周神经损伤后再生的相关信号通路 . 药学实践与服务, 2021, 39(5): 391-394, 430. doi: 10.12206/j.issn.1006-0111.202101027
    [4] 刘航, 赵庆杰, 徐伟.  信号转导及转录激活因子3抑制剂研究进展 . 药学实践与服务, 2021, 39(1): 4-8. doi: 10.12206/j.issn.1006-0111.202006024
    [5] 刘国栋, 周丽, 张文静, 王卓.  粒细胞巨噬细胞刺激因子联合全肺灌洗对特发性肺泡蛋白沉积症的疗效和安全性 . 药学实践与服务, 2018, 36(2): 183-185. doi: 10.3969/j.issn.1006-0111.2018.02.019
    [6] 沈启睿, 李永华, 张文杰, 王培.  同型半胱氨酸激活JNK信号通路诱导血管平滑肌细胞氧化应激的损伤研究 . 药学实践与服务, 2018, 36(6): 499-502,511. doi: 10.3969/j.issn.1006-0111.2018.06.005
    [7] 张金宇, 王丽红, 秦玉璘, 张璐璐, 姜远英, 曹永兵.  转录因子Cup2对白念珠菌铜离子代谢、氧化应激调控作用的初步研究 . 药学实践与服务, 2017, 35(3): 224-228. doi: 10.3969/j.issn.1006-0111.2017.03.008
    [8] 乔进, 陈敏, 窦志华, 徐济良, 吴锋, 孟国梁.  转化生长因子-β1/Smad信号转导途径在大黄酸保护糖尿病大鼠肾脏中的机制探讨 . 药学实践与服务, 2017, 35(5): 402-406,426. doi: 10.3969/j.issn.1006-0111.2017.05.004
    [9] 黄亚辉, 董国强, 张万年, 盛春泉.  酪氨酸-DNA磷酸二酯酶抑制剂的研究进展 . 药学实践与服务, 2015, 33(4): 298-302. doi: 10.3969/j.issn.1006-0111.2015.04.003
    [10] 王珂琪, 许维恒, 丁力, 张俊平.  蛋白激酶CK2α在大鼠肝纤维化病理过程中的表达变化 . 药学实践与服务, 2015, 33(6): 518-521,575. doi: 10.3969/j.issn.1006-0111.2015.06.010
    [11] 谭何新, 刘颖, 张磊.  丹参果糖磷酸酶基因的克隆和功能研究 . 药学实践与服务, 2014, 32(1): 35-41,48. doi: 10.3969/j.issn.1006-0111.2014.01.009
    [12] 叶齐, 王婧, 郭学青, 陈崇宏, 张俊平.  依托泊苷通过蛋白酶体通路诱导白血病细胞凋亡 . 药学实践与服务, 2010, 28(1): 25-28,69.
    [13] 蒋国军, 张黎, 李铁军, 邱彦, 楼宜嘉.  洛伐他汀对氧化修饰低密度脂蛋白刺激U937细胞缺氧诱导因子-1α表达的影响 . 药学实践与服务, 2009, 27(3): 170-173.
    [14] 刘厚佳, 李铁军, 邱彦, 芮耀诚, 卫立辛, 吴孟超, 张黎.  欧芹素乙对人脐静脉内皮细胞的保护作用及对血管内皮生长因子表达的影响 . 药学实践与服务, 2009, 27(2): 94-98.
    [15] 张黎, 邱彦, 芮耀诚, 李铁军, 刘厚佳.  缺氧对血管内皮生长因子诱导主动脉内皮细胞通透性增加的调控研究 . 药学实践与服务, 2004, (3): 135-137.
    [16] 邱彦, 芮耀诚.  血管内皮生长因子血管通透作用研究进展 . 药学实践与服务, 2002, (4): 228-231.
    [17] 徐芳, 信艳红, 段艳冰, 屈岩.  表皮生长因子的临床应用 . 药学实践与服务, 2002, (6): 324-326.
    [18] 陆兵, 谢英华, 程度胜, 朱厚础.  重组人表皮生长因子凝胶剂的研制 . 药学实践与服务, 2001, (3): 143-145.
    [19] 孟凡振.  表皮生长因子的药理研究进展 . 药学实践与服务, 1999, (4): 207-209.
    [20] 李医明, 洪永福, 张紫洞.  双没食子酸及其衍生物对逆转录酶与DNA聚合酶的分化抑制 . 药学实践与服务, 1991, (2): 57-58.
  • 加载中
计量
  • 文章访问数:  3762
  • HTML全文浏览量:  475
  • PDF下载量:  1279
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-23
  • 修回日期:  2018-07-01

PP2C蛋白磷酸酶调控的细胞信号通路研究进展

doi: 10.3969/j.issn.1006-0111.2018.05.001

摘要: 2C类蛋白磷酸酶是蛋白磷酸酶家族的重要成员,可以对丝/苏氨酸残基特异性脱磷酸。近来研究表明,2C类蛋白磷酸酶控制着大量关键的细胞功能,如增殖、细胞周期阻滞、衰老和细胞程序性死亡、凋亡和自噬等,因而在介导机体免疫反应、衰老、神经发育及肿瘤发生发展中发挥重要的生物学作用。总结PP2C基因各亚型参与介导的重要细胞信号通路,如丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇3-激酶/丝苏氨酸蛋白激酶(PI3K/AKT)、转化生长因子-β(TGF-β)/Smads、核转录因子-κB(NF-κB)及DNA损伤应答通路,以期为阐明上述生理病理过程的分子基础和调控机制提供新的思路。

English Abstract

齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
引用本文: 齐阳, 许维恒, 张俊平, 宋洪涛. PP2C蛋白磷酸酶调控的细胞信号通路研究进展[J]. 药学实践与服务, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
Citation: QI Yang, XU Weiheng, ZHANG Junping, SONG Hongtao. Progress on cell signaling pathways regulated by PP2C protein phosphatases[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 385-388,456. doi: 10.3969/j.issn.1006-0111.2018.05.001
参考文献 (38)

目录

    /

    返回文章
    返回